Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym

A. Kozioł-Rachwał

Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science and Technology (AIST)

seminarium WFiIS AGH 28.04.2017

Plan seminarium

- prostopadła anizotropia magnetyczna (PMA) w układach cienkowarstwowych
- efekt wpływu pola elektrycznego na PMA (VCMA)
- PMA oraz VCMA w układzie MgO/Fe/Cr
- jak zwiększyć PMA oraz VCMA w układzie MgO/Fe/Cr poprzez inżynierię interfejsową?

Prostopadła anizotropia magnetyczna (PMA)

• $E = - K_{eff} cos^2 \vartheta$

- $E = -(K_v + K_s / t) \cos^2 \vartheta$
- $K_s \sim 0.5 \ mJ/m^2$

Wpływ pola elektrycznego na PMA w cienkiej warstwie ferromagnetyka

M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Science 315 (2007)

Duża PMA oraz silny efekt VCMA niezbędne do realizacji pamięci magnetycznej nowej generacji

T. Nozaki et al., to be published

T. Nozaki et al., imPACT symposium, 2015

PMA w układzie MgO/Fe/Cr

- PMA @ RT subnanometrowych warstw Fe w układzie MgO/Fe/Cr oraz MgO/Fe/V^{1,2}
- pochodzenie PMA: anizotropia powierzchniowa (~1mJ/m²)

¹Lambert et al. Appl. Phys. Lett. 102, 122410 (2013), ²Koo et al. Appl. Phys. Lett. 103, 192401 (2013)

Wpływ buforowej warstwy MgO na PMA w układzie MgO/Fe/Cr/bufor MgO/MgO(001)

- PMA subnanometrowych warstw Fe w układzie MgO/Fe/Cr/buforMgO(3nm)/MgO(001)
- anizotropia powierzchniowa $K_s \simeq 2.1 \text{mJ/m}^2$ 2.5 2.0 mJ/m Czy MA w układzie 1.5 MgO/Fe/Cr/buforMgO/MgO(001) może być kontrolowana poprzez 1.0 Le zmianę grubości bufora MgO? 0.5 0.0 0.1 0.4 0.0 0.2 0.3 0.5 0.6 0.70.8 0.9 Fe thickness, $t_{F_{\rho}}$ ' (nm)

T. Nozaki, AKR, W. Skowroński, V. Zayets, Y. Shiota, S. Tamaru, H. Kubota, A. Fukushima, S. Yuasa, and Y. Suzuki, Phys. Rev. Applied 5, 044006 (2016).

MgO/Fe(t)/Cr/bufor MgO(d)/MgO(001)

- podłoże MgO(001) (wygrzano @ 800°C)
- klinowa warstwa MgO @ 200°C, 0 < d < 4nm(15nm)
- 30 nm Cr @ 200°C (wygrzano @ 800°C/20min.)
- Fe @ 200°C (0.4 1.1)nm (wygrzano@ 260°C)
- 3nm MgO @ 60°C (wygrzano@ 350°C/20minutes)
- 20nm ITO @ RT

MgO/Fe(t)/Cr/bufor MgO(d)/MgO(001)

MgO/Fe(*t*)/Cr/bufor MgO(*d*)/MgO(001) – pomiary PMOKE

Zależność MA od grubości bufora MgO(d)

AKR, T. Nozaki, V. Zayets, H. Kubota, A. Fukushima, S. Yuasa and Y. Suzuki, J. Appl. Phys. J. 120, 085303 (2016).

Pytania: 1. co jest źródłem MEA w układzie? 2. dlaczego MEA zmienia się z grubością bufora MgO?

Pochodzenie MEA w układzie MgO/Fe/Cr

- silna zależność MEA vs. stała sieci dla FeCo (K. H. He and J. S. Chen, JAP 111, 07C109 (2012))
- dla *d*=3nm przyczynek objętościowy do $K_{eff} \sim K_v$ =-2*10⁶J/m³
- zmiana stałej sieci Fe może być spowodowane mieszaniem Fe i Cr

Dlaczego K_{eff} zmienia się z grubością d?

wzrost ujemnego przyczynku do K_{eff}
wraz ze wzrostem grubości MgO

- zmiana naprężeń w warstwie Fe

MA w układzie MgO/Fe(0.4nm – 1.0nm)/Cr/MgO(*d*)/MgO(001) zależy od grubości bufora MgO

dla t < 0.8 nm niemonotoniczna zależność H_c(d)

 dla 0.8nm ≤ t ≤1.0nm zmiana kierunku namagnesowania (SRT) w funkcji grubości MgO

Wpływ pola elektrycznego na MA w układzie Cr/Fe/MgO

Wpływ pola elektrycznego na MA w układzie Cr/Fe/MgO

 $G(\vartheta) = G_{90} + (G_P - G_{90}) \cos\vartheta$

Wpływ pola elektrycznego na MA w układzie Cr/Fe/MgO

T. Nozaki, AKR, W. Skowroński, V. Zayets, Y. Shiota, S. Tamaru, H. Kubota, A. Fukushima, S. Yuasa, and Y. Suzuki, Phys. Rev. Applied 5, 044006 (2016).

Silny efekt VCMA zaobserwowano dla t_{Fe} < 6Å !

Cr/⁵⁷Fe(6Å)/MgO – spektroskopia Mössbauera

widmo Cr/⁵⁷Fe(6Å)/MgO przed i po wygrzaniu

Po wygrzaniu:

- "wyostrzenie" interfejsów
- segregacja Cr
- SRT

AKR, T. Nozaki, K. Friendl, J. Korecki, S. Yuasa and Y. Suzuki, http://arxiv.org/abs/1701.00048

Jak obecność Cr wpływa w interfejsie Fe/MgO wpływa na PMA oraz VCMA?

Zależność K_{eff}od grubości Cr

PMA w układzie Cr/Fe/MgO może być wzmocniona poprzez naniesienie cienkiej warstwy Cr pomiędzy Fe i MgO!

Zależność K_{eff} od grubości Cr d

PMA w układzie Cr/Fe/MgO może być wzmocniona poprzez naniesienie cienkiej warstwy Cr pomiędzy Fe i MgO!

Zależność efektu VCMA od grubości Cr

Zależność efektu VCMA od grubości Cr

wzmocnienie VCMA dla optymalnej grubości Cr!

Zależność PMA oraz VCMA od grubości Cr

AKR, T. Nozaki, K. Freindl, J. Korecki, S. Yuasa and Y. Suzuki, http://arxiv.org/abs/1701.00048

Wzmocnienie PMA oraz VCMA – przyczyna?

A. Hallal et al. PRB 90, 064422(2016)

J. Zhang et al. arXiv:1612.02724v1

P. V. Ong et al. PRB 92, 020407(R) (2015)

Podsumowanie

Podziękowania

AIST (Tsukuba) Spintronics Research Center

- T. Nozaki
- V. Zayets
- Y. Shiota
- S. Tamaru
- H. Kubota
- A. Fukushima
- Y. Suzuki
- S. Yuasa

AGH & IKIFP PAN

- W. Skowroński
- K. Freindl
- J. Korecki

This work was supported by ImPACT Program of Council for Science