Magnetyzm i nadprzewodnictwo w domieszkowanym EuFe₂As₂

Zbigniew Bukowski

Polska Akademia Nauk Instytut Niskich Temperatur i Badań Strukturalnych im. Włodzimierza Trzebiatowskiego Wrocław, ul. Okólna 2

NARODOWE CENTRUM NAUK

Seminarium Wydziału Fizyki i Informatyki Stosowanej AGH Kraków 18-01-2019

Plan:

- 1. Podstawowe właściwości EuFe₂As₂
- 2. Wzrost monokryształów z metalicznych topników
- 3. Diagram fazowy EuFe₂As₂
 - wpływ pola magnetycznego
 - wpływ ciśnienia

4. Podstawienia chemiczne w EuFe₂As₂

- domieszkowanie dziurowe K, Na
- domieszkowanie elektronowe La
- podstawienia izowalencyjne Ca, Sr, Ba
- podstawienia izowalencyjne P
- podstawienia metalami przejściowymi Co, Ni, Ir, Ru, Rh...
- 5. Nadprzewodnictwo i magnetyzm w EuFe_{2-x}Ni_xAs₂ wybrane przykłady
- 6. Spontaniczne worteksy
- 7. Poszukiwanie nadprzewodnictwa w EuFe_{2-x}Ni_xAs₂

Crystal structure of iron-based superconductors

nonsuperconducting parent compounds

BaFe₂As₂ SrFe₂As₂ CaFe₂As₂ EuFe₂As₂

KFe₂As₂ RbFe₂As₂ CsFe₂As₂

low-Tc superconductors

Magnetic structure of EuFe₂As₂

Two magnetic sublattices

Fe²⁺ 3d itinerant electrons Spin Density Wave Fe saturation moment of 0.988 μ_B aligned along the long *a* axis. T_{SDW}=190 K

 $\begin{array}{ll} \mbox{localised Eu}^{2+} \mbox{ 4f electrons,} \\ \mbox{spin S=7/2} & \mu_{eff} = 7.94 \ \mu_{B} \\ \mbox{RKKY} & \mbox{A-type antiferromagnet} \\ & \ T_{N} = 19 \ \mbox{K} \end{array}$

Growth of single crystals from Sn flux

Single crystals of doped $EuFe_2As_2$ with a size up to few millimeters were grown from Sn flux. Starting components: $Eu_{(Ca)}$, $Fe_{(Co)}$, As_2 , and Sn were placed in alumina crucibles and sealed in silica tubes under reduced pressure of Ar. The ampoules were heated to 1050°C and slowly cooled down to 600°C, when liquid tin was decanted.

Single crystals grown from Sn flux

Effect of magnetic field on SDW ordering

Simple extrapolation suggests that an **extremely high field** (>500 T) is needed to suppress the AFM state at low temperatures.

Tokunaga et al. J. Low Temp. Phys. 159 (2010) 601

Effect of magnetic field on magnetic order in EuFe₂As₂

- spin canting
- metamagnetic transitions
- field induced ferromagnetism

Xiao et al.PRB 81, 220406R (2010)

Effect of pressure

Pressure-suppressed SDW order

Persistent Eu²⁺ magnetic order

Pressure-induced superconductivity

Kurita et al. PRB 83, 214513 (2011)

Effect of pressure

Effect of pressure on EuFe₂As₂ crystal structure

Effect of pressure on Eu-ion valence in EuFe₂As₂

43 GP

7.00

E (keV)

8 00

6.98

Energy (keV)

Kumar et al. Appl. Phys. Lett. 104, 042601 (2014)

6.97

Normalized Intensity

6.96

Pressure induced tetragonal-"collapsed tetragonal" phase transition

Conversion of Eu²⁺ to Eu³⁺ under pressure

K, Na-substitution

Anupam et al. J. Phys.: Condens. Matter 23 (2011) 455702

hole doping:

- SDW is suppresed
- Eu²⁺ AF order disappears
- appearence of superconductivity

La-substitution

M. Zhang et al., PRB 85, 092503 (2012)

Dilution of Eu-sublattice with nonmagnetic ions

Zapf and Dressel, Rep. Prog. Phys. 80 (2017) 016501

- Disappearance of magnetic order of Eu²⁺
- SDW order remains intact

L. M. Tran et al. PRB 98, 104412 (2018)

Co-substitution: EuFe_{2-x}Co_xAs₂

Single crystals of EuFe_{2-x}Co_xAs₂ grown from Sn flux

Eu²⁺ moments rotate from abplane toward c-axis direction

Œ

B

V.,

Magnetic structure of Eu(Fe_{0.82}Co_{0.18})₂As₂ (single-crystal neutron diffraction)

long-range ferromagnetic order of the Eu^{2+} moments along the *c* direction $T_c = 17 \text{ K}$ no incommensurate magnetic reflections

corresponding to the helical arrangement of the Eu²⁺ spins are observed

Antiferromagnetism of the Fe²⁺ moments still survives tetragonal-to-orthorhombic structural transition is observed transition temperatures of the Fe spin-density-wave (SDW) order and the structural phase transition are significantly suppressed to T_{SDW} = 70 K and T_S = 90 K Superconducting T_{SC}=8 K

Effect of Co-doping on Eu^{2+} magnetic ordering in Eu(Fe_{1-x}Co_x)₂As₂ single crystals

Neutron diffraction

- ferromagnetic Eu^{2+} moment of $6.2\mu_B$ purely along the c direction
- Fe²⁺ moment is estimated to be 0.63(4) μ_B

W. T. Jin et al., Phys. Rev. B 94, 184513 (2016)

Co concentration x

A-type antiferromagnet

canted AF

ferromagnet_s

Magnetic phase diagram of $Eu(Fe_{1-x}Co_x)_2As_2$ (Sn-flux-grown single crystals)

W. T. Jin et al., PRB **94**, 184513 (2016)

Hydrostatic pressure effects on the static magnetism in Eu(Fe_{0.925}Co_{0.075})₂As₂

W. T. Jin et al., Scientific Reports | 7: 3532 |

Ferromagnetic Eu(Fe_{0.86}Ir_{0.14})₂As₂

V. K. Anand et al., PRB **91** 094427 (2015)

The body centered tetragonal chemical and magnetic unit cell (space group I4/mmm).

ferromagnetically coupled Eu moments are aligned along the c axis with a magnetic propagation wave vector k = (0, 0, 0) and ordered moment of 6.29(5) μ_B at 1.8 K.

Eu(Fe_{0.75}Ru_{0.25})₂As₂ ferromagnetic superconductor

Jiao et al., J. Phys.: Conf. Ser. 400 (2012) 022038

Jiao et al., EPL, 95 (2011) 67007

T_{sc} =23 K Mossbauer data indicate that the Eu²⁺ spins order ferromagnetically below 19.5 K with the moments tilted 20° from the c-axis.

Isovalent P-substitution EuFe(As_{1-x}P_x)₂

Cao et al. J. Phys.: Condens. Matter 23 (2011) 464204

Nandi et al., PRB 89, 014512 (2014)

Peculiar properties of Sn-flux-grown Eu(Fe_{0.81}Co_{0.19})₂As₂ single crystals

Magnetic field enhancement of superconductivity ?!

Peculiar properties of Sn-flux-grown Eu(Fe_{0.81}Co_{0.19})₂As₂ single crystals

Resistivity "peak" most likely corresponds to the flux flow effect

Peculiar properties of Sn-flux-grown Eu(Fe_{0.81}Co_{0.19})₂As₂ single crystals

Bukowski et al., (SCTE 2010 Annecy)

Spontaneous vortex state in ferromagnetic superconductor

Peculiar properties of Sn-flux-grown Eu_{0.73}Ca_{0.27}(Fe_{0.87}Co_{0.13})₂As₂ single crystals

Zero-resistance superconductivity is suppressed in antiferromagnetic region and coexists with field induced ferromagnetism

Search for superconductivity in Ni-substitututed EuFe₂As₂

Polycrystalline material

Zhi Ren et al. PRB 79, 094426(2009)

I Nowik et al. New Journal of Physics 13 (2011) 023033

Mössbauer studies of Eu(Fe_{0.9}Ni_{0.1})₂As₂ and Eu(Fe_{0.89}Co_{0.11})₂As₂, in particular the Eu negative quadrupole interaction and the tilting of H_{eff} from the *c*-axis, are almost the same. This indicates a similar magnetic structure regardless of whether the system is normal conducting or SC

Anupam et al. AIP Conf. Proc. 1349, 1293-1294 (2011)

Superconductivity not detected

In EuFe1.9Ni0.1As2 in addition to FM transition, two more transitions were observed. = 3.5 K. The broad transition at T_{peak} =11.5 K could be due to the transition from FM to AFM state. The transition at T_g =3.5 K could be due to the spin glass ordering, which might arise due to the competition between FM and AFM ordering and hence leads to the spin freezing at T_g .

Ni substitution in EuFe₂As₂

Single crystals of EuFe_{2-x}Ni_xAs₂ grown from Sn flux (up to x=0.4) Chemical composition-determined from EDS data

Electrical resistivity

Magnetic properties of EuFe_{1.92}Ni_{0.08}As₂

AC-susceptibility vs. Temperature in various magnetic fields

Magnetization vs. Temperature in various magnetic fields

Magnetic properties of EuFe_{1.92}Ni_{0.08}As₂

Field –dependent magnetization in various temperatures

Magnetic phase diagram of $EuFe_{2-x}Ni_{x2}As_{2}$

200

EuFe_{2-x}Ni_xAs₂ 150 100 Ч(Х) SDW 50 20 15 CAF FM 10 0.2 0.1 0.3 0.4 0.0 X

superconductivity above 1.8 K

Magnetism of Eu in EuFe_{2-x}Ni_xAs₂ is very similar to that in EuFe_{2-x}Co_xAs₂ and seems to be not responsible for the absence of superconductivity.

Search for superconductivity in EuFe_{2-x}Ni_xAs₂ under high pressure

Doped EuFe₂As₂

- Magnetic field easily aligns Eu²⁺ spins along the direction of the applied field (field induced ferromagnetism)
- Hydrostatic perssure, transition metal substitutions, and P substitution suppress SDW order, induce superconductivity and change magnetic order of Eu²⁺ moments from antiferro- to ferromagnetic
- Superconductivity coexists both with AF and F order of Eu²⁺ system

Coexistence of superconductivity and magnetism,

Zero-resistance as an effect of applied magnetic field,

High anisotropy,

Magnetic field sensitive electronic transport,

Spontaneous superconducting vortices,

- potentially interesting for spintronics and other electronic applications

Collaboration

Presented unpublished results obtained in fruitfull collaboration with:

Michał Babij Lan Maria Tran Daniel Gnida Piotr Wiśniewski

