Dynamika multifraktali finansowych

Paweł Oświęcimka

Institute of Nuclear Physics PAN Department of Complex Systems Theory

Fractal Geometry of ...

Scientists find evidence of mathematical structures in classic books

Researchers at Poland's Institute of Nuclear Physics found complex 'fractal' patterning of sentences in literature, particularly in James Joyce's Finnegans Wake, which resemble 'ideal' maths seen in nature

Multifractal methodology

Fractal Geometry

The Journal of Business,

THE VARIATION OF CERTAIN SPECULATIVE PRICES*

BENOIT MANDELBROT

Vol. 36, No. 4 (Oct., 1963), pp. 394-419

Sierpiński Triangle (1916)

Self-similarity of the fractal structure

Fractal mosaic

Anagni Cathedral, Lazio, Italy.

Source of pictures: internet

Fractal dimension

$$N \propto \varepsilon^{-d_f}$$
$$d_f = \lim_{\varepsilon \to 0} \frac{\log(N(\varepsilon))}{\log(\frac{1}{\varepsilon})}$$
$$\prod_{N=1}^{N=4} N = 9$$
$$\varepsilon = 1 \quad \varepsilon = 1/2 \quad \varepsilon = 1/3$$

1.
2.
3.
3.

$$\varepsilon = (1/2)^{0-1}$$

 $N=3^{0}=1$
 $\varepsilon = (1/2)^{1-1/2}$
 $N=3^{1}=3$
 $\varepsilon = (1/2)^{2}=1/4$
 $N=3^{2}=9$
 $d_f = \frac{\log(3)}{\log(2)}$
 $d_f = 1.5849...$

Fractal dimension

Cantor set

d_f=0.63...

(more than point, less than segment)

Sierpiński carpet

 $d_f = 1.89...$ (more than line, less than plane)

Natural Fractals

Source of pictures: internet

Fractal functions

- Fractal function self-similar function which is invariant by iterative action of elementary similitudes
- Self-affinity concept the set is similar to itself when anisotropic transformation is applied

Fractal functions

(determines how regular the function f is)

Fractional Brownian Motion

Local Regularity of Functions

Local singular behaviour of f:

$$f(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0)^n + C|x - x_0|^{\alpha(x_0)}$$

 $\alpha(x_0)$ – Hölder exponent

 $\succ \alpha(x_0) \nearrow -$ more regular function

 $\succ \alpha(x_0) \searrow -$ less regular function

 $\alpha(x_0) = H$ for fractional Brownian motion

Multifractal Spectrum

 α – Hölder exponent

 $f(\alpha) = d_f(x, \alpha(x) = \alpha)$

Width of the spectrum:

$$\Delta \alpha = \alpha_{max} - \alpha_{min}$$

The wider is spectrum the more complex is the time series

Wavelet Transform Modulus Maxima (WTMM)

 x_i - time series

S' scale n – time ψ - wavelet

$$T_{\psi}(n,s) = \frac{1}{s} \sum_{i=1}^{N} X_i \psi[(i-n)/s]$$

Identifying positions of the local maxima T_{Ψ}

Calculating the partition function Z(q, s)

$$Z(q, s) = \sum_{l \in L(s')} |T_{\psi}(n_l(s), s)|^q$$
$$Z(q, s) \sim (s)^{\tau(q)}$$
$$\alpha = \tau'(q), \quad f(\alpha) = q\alpha - \tau(q)$$

Time

Multifractal detrended fluctuation analysis (MFDFA)

<u>Multifractal Spectrum</u> as a measure of complexity

Finnegans Wake

Sentence length variability

S. Drożdż, P. Oświęcimka, A. Kulig, J. Kwapień, K. Bazarnik, I. Grabska-Gradzińska, J. Rybicki, M. Stanuszek Quantifying origin and character of long-range correlations in narrative texts, Information Sciences 331, 32 (2016)

"Typical" Mutlifractal Characteristics

RAPID COMMUNICATIONS

DROŻDŻ AND OŚWIĘCIMKA

PHYSICAL REVIEW E 91, 030902(R) (2015)

The local Hurst exponent of the financial time series

Multifractality of stock market

Daily prices of the S&P500 index January, 1950 – December, 2016 (16,496datapoints).

S&P500 analysis

Singularity spectra $f(\alpha)$ calculated within a rolling 20-year window

S. Drożdż, R. Kowalski, P. Oświęcimka, R. Rak, R. Gębarowski, *Dynamical Variety of Shapes in Financial Multifractality,* Complexity, **2018**, Article ID 7015721

S&P500 analysis

Projections of f α of $f(\alpha)$ onto the time $t - \alpha$ plane

S. Drożdż, R. Kowalski, P. Oświęcimka, R. Rak, R. Gębarowski, *Dynamical Variety of Shapes in Financial Multifractality,* Complexity, **2018**, Article ID 7015721

Multifractal spectra for an increasing number of the superimposed binomial cascades

S. Drożdż, P. Oświęcimka, *Detecting and interpreting distortions in hierarchical organization of complex time series*, Physical Review E **91**, 030902(R) (2015)

<u>S&P500, Dow Jones, and of the sum of 9 DJIA stocks</u>

GE (General Electric), AA (Alcoa), IBM (International Business Machines), KO (Coca-Cola), BA (Boeing), CAT (Caterpillar), DIS (Walt Disney), HPQ (Hewlett-Packard), DD (DuPont)

Thank you for your attention.