

Elastomery ciekłokrystaliczne, czyli jak zbudować miękkiego robota

Jakub Haberko

Seminarium WFiIS AGH, 09.04.2021

- Od ciekłych kryształów, poprzez polimery ciekłokrystaliczne do ciekłokrystalicznych elastomerów (*Liquid Crystal Elastomers*, LCE)
- Przykłady zastosowań LCE
- Tworzenie warstw LCE różne metody, kontrola kierunku anizotropii własności
- Optyczne szczypce, siłowniki liniowe i akordeon eksperyment i symulacje

 1888 – Friedrich Reinitzer obserwuje topienie kryształów roślinnego benzoesanu cholesterolu pod mikroskopem (Praga)

- 1889 Otto Lehmann potwierdził nowy stan materii "ciekły kryształ"
- I. 20-te XX w. Georges Friedel, własności plastyczne i klasyfikacja
- I. 20-30. XX w. Mieczysław Jeżewski, Marian Mięsowicz, (AGH, Kraków), własności elektryczne, dielektryczne, magnetyczne, anizotropia lepkości
- Od I. 70-tych XX w. zastosowania w technice

M. Jeżewski

M. Mięsowicz

G. Friedel

F. Reinitzer

O. Lehmann

Nematyk (gr. vήμα - nić)

- Brak pozycyjnego porządku dalekiego zasięgu
- Porządek orientacyjny dalekiego zasięgu

Nematyk chiralny

- Zbudowany z cząsteczek chiralnych
- Dawniej: c.k. cholesterolowy
- Skok helisy >100 nm
- Skok ~ λ odbicie lub rozpraszanie światła
- Skok zależy od temperatury
 → zastosowania

Polimery ciekłokrystaliczne (LCP)

Ciekłokrystaliczne elastomery (LCE)

AGH

Źródło: DOI:10.1007/12_2011_164

Właściwości:

- LCE = LCP + sieciowanie
- Spontaniczne duże odkształcenie przy zmianie temperatury
- Odwracalne odkształcenie powodowane światłem
- Odkształcenie skorelowane z kierunkiem direktora
- Zależne od historii powstania
- Możliwa modulacja direktora w obrębie materiału

Gdy grzejemy \rightarrow przejście nematyk – ciało izotropowe

Źródło: https://doi.org/10.1016/j.sna.2014.10.014

AGH

H. Zeng et al. *Light-Fueled Microscopic* Walkers, Adv. Mat 2015

H. Rogóż et al. Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale, Adv. Opt. Mat. 2014

Zastosowania LCE – kilka przykładów

AGH

L. Dong, Y. Zhao, Mater. Chem. Front. (2018)

Zastosowania LCE – kilka przykładów

O. Wani et al., Adv. Optical Mater. 2017, 1700949

Przygotowanie warstwy LCE

AGH

A – monomer, B – czynnik sieciujący (crosslinker), C – fotoinicjator, D – barwnik (disperse red)

Szkło	Szkło + PVA + orientacja PVA	(Szkło + PVA)x2	Infiltracja roztworu (siły kapilarne)	Obniżenie temp. → przejście I-N	Sieciowanie UV
			くいい		
			80°C	40°C	10

Orientacja molekuł LCE - mechaniczna

AGH

M. Yamahara et al. *Relationship between Molecular Orientation of Rubbed Polyimide Alignment Layer and That of Liquid-Crystalline Polymer Film Coated on the Alignment Layer* Mol. Cryst. Liq. Cryst. 466(1):39-52 · May 2007

Orientacja molekuł LCE - światłem

AGH

O. Wani et al., Adv. Optical Mater. 2017, 1700949

Otrzymywanie elementów LCE aktywowanych światłem

Otrzymywanie elementów LCE – nowa metoda

Wzrost LCE na włóknie optycznym

GROWING ON FIBER 1. cell with fiber glass slide liquid monomer glass slide optical fiber 2. polymerization (growth) LCE structure UV light 3. LCE structure optical pliers

F T~65°C 00:00

LC w fazie skręconego nematyka

Gotowa struktura

LC w fazie skręconego nematyka

Sieciowanie światłem UV

Otrzymywanie elementów LCE – nowa metoda

Układ optyczny do polimeryzacji i wzbudzania elementów LCE

- FC kolimator (obiektyw 3x)
- M lustro

AGH

- PBS rozdzielacz wiązki
- SM lustro mobilne`

Wpływ warunków fotopolimeryzacji na kształt elementów LCE

- Oświetlenie zielonym laserem przez światłowód → absorpcja światła w barwniku → ogrzanie materiału → ruch elementu
- Przemieszczeniem końcówki można sterować dobierając moc lasera

"Chwytaki" w przyrodzie i technice

- B silniki zainstalowane tuż przy szczękach
- C silniki zainstalowane zdalnie i połączone ze szczękami cięgłami
- D deformowalne szczęki

Szczypce optyczne

2x światłowód z LCE na końcu, spojone klejem UV \rightarrow szczypce optyczne

Czy tym da się coś chwycić?

- Przemieszczenie drutu: 500 μm
- Szacowana siła:
 10⁻⁷ N

Niektóre parametry LCE pożyczone z HDPE...

Przewodnictwo cieplne [W/m·K]	0,49
Gęstość [kg/m³]	960
Moduł Younga [GPa]	1,032
Współczynnik Poissona	0,4
Liniowy współczynnik rozszerzalności α ₁	0,0025
Liniowy współczynnik rozszerzalności α ₂ (wzdłuż direktora)	-0,005
Ciepło właściwe [J/kg·K]	1200
Współczynnik konwekcji [W/m²·K]	20
Liczba elementów skończonych	4860

Grzanie elementu laserem

Chłodzenie poprzez konwekcję i promieniowanie

Miękkie szczypce - symulacje MES

Pręt LCE z jednorodną orientacją direktora

Liniowe siłowniki z LCE

AGH

Grzanie: źródło mocy cieplnej o profilu wiązki lasera

Oświetlenie laserem:

AGH

- Wiązka gaussowska, FWMH=2 mm
- Absorpcja wiązki zgodna z pr. Lamberta-Beera, 90% absorpcji na drodze 25 μm —
- Gęstość mocy cieplnej w pasku:

$$\rho(x, y, z) = \frac{P_{laser} \cdot a}{2\pi\sigma^2} \exp\left(-\frac{x^2 + (z - z_o)^2}{2\sigma^2} - ay\right)$$

$$\sigma = \frac{FWHM}{2\sqrt{2\ln 2}} = 1.27mm$$
$$\int_{-\infty}^{\infty} dx \int_{0}^{+\infty} dy \int_{-\infty}^{+\infty} dz \rho(x, y, z) = P_{laser}$$

 $T(y) = T_o \exp(-ay), a = 92103m^{-1}$

Liniowe siłowniki LCE – symulacje MES

P = 0.19 W

AGH

P = 0.70 W

eksperyment

0,0

2

0

symulacje

AG H

8

6

4

time (s)

0,0

0,0

0,6

Liniowe siłowniki LCE – symulacje MES

AINERSY A

2,4

1,8

1,2

time (s)

Akordeon – symulacje MES

Akordeon – symulacje MES

Akordeon – symulacje MES

Akordeon – eksperyment

- LCE świetnie nadają się do konstrukcji miękkich robotów i ich elementów
- Elementy mogą być aktywowane zmianą temperatury i światłem
- Jak uzyskać bardziej skomplikowane rozkłady direktora?
 - orientacja światłem spolaryzowanym
 - orientacja polem elektrycznym
 - orientacja polem magnetycznym (?)
- Połączenie nanolitografii z orientacją polem elektrycznym "materiał 5D"
- Symulacje MES będą miały rosnące znaczenie w projektowaniu elementów i przewidywaniu ich odkształceń

Podziękowania

- Michał Zmyślony
- Klaudia Dradrach
- Paweł Nałęcz-Jawecki
- Mikołaj Rogóż
- Piotr Wasylczyk

- M. Zmyślony, K. Dradrach, J. Haberko, P. Nałęcz-Jawecki, M. Rogóż, P. Wasylczyk, Optical Pliers -Micrometer Scale Light-Driven Tools Grown on Optical Fibers, Adv. Mater. 2020, 32, 2002779
- P. Grabowski, K. Dradrach, J. Haberko, P. Wasylczyk, *Photo-mechanical response dynamics of liquid crystal elastomer linear actuators*, **Materials 2020, 13, 2933**; doi:10.3390/ma13132933

Dziękuję za uwagę