AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Badanie mechanizmów odkształcenia sprężysto-plastycznego materiałów polikrystalicznych z wykorzystaniem dyfrakcji neutronów

mgr inż. Przemysław Kot Promotor: prof. dr hab. inż. Andrzej Baczmański Promotor pomocniczy: dr inż. Marcin Wroński

Plan

- 1. Prezentacja aparatury której używamy w Dubnej
- 2. Pomiary naprężeń w kompozycie Al/SiC
- Metoda grup krystalitów z użyciem dyspersji kątowej (HK9, Řež, Praga) - lokalizacja naprężeń.
- 4. Magnez AZ31 Próba ściskania (EPSILON, FLNP, Dubna): naprężenia podczas bliźniakowania
- 5. Ewolucja naprężeń ścinających na systemach poślizgów
- 6. Podsumowanie

Stress/strain measurement using diffraction

In situ diffraction measurement under applied loads

AGH

IBR-2 impulse reactor

Joint Institut for Nuclear Research (Dubna, Russia)

EPSILON-MSD diffractometer

FSD diffractometer

Al/SiC_p metal matrix composite

metal matrix composite (83% Al2124 and 17% SiC):

- significant difference between elastic constants,
- Al plastic, SiC elastic.

GPa	Young's modulus	Poisson's ratio	Plastic deformation
SiC	450	0.21	No
ΑΙ	70	0.33	Yes

- Single crystal elastic constants: - SiC (6H - hexagonal),
- Al cubic

SiC - 0.7µm

E. Gadalińska, A. Baczmański, S. Wroński, P. Kot, M. Wroński, M. Wróbel, Ch. Scheffzük, G. Bokuchava, K. Wierzbanowski, Metals and Materials International, 25 (2019) pp 657–668.

P. Kot, A. Baczmański, E. Gadalińska, S. Wroński, M. Wroński, M. Wróbel, G. Bokuchava, Ch. Scheffzük, K. Wierzbanowski, Journal of Materials Science & Technology, 36 (2020) 176–189

Al/SiC (T6) in-situ cooling test

TOF diffraction in JINR Dubna, Russia

"in situ" applied load

EPSILON - MDS diffractometer

Seminarium Wydziałowe WFiIS AGH, 28.05.2021, Kraków

AZ 31 magnesium alloy

Material characterization Mg alloy (AZ31) – hot rolled

Mg alloy (AZ31) – anisotropy

Monochromatic wavelength: 1.158 Å

Crystallite group method (neutrons)

Determination of stress tensor for different loads-tensile RD (Exp. 1)

AGH

Determined von Mises stress-tensile

Compression test (EPSILON, FLNP, Dubna): stresses during twinning

EPSILON-MDS (JINR, DUBNA, RUSSIA) - TOF

Compression test in ND (Exp. 2) and RD (Exp. 3)

AGH

Crystallite group method – TOF in Dubna

Search for orientations

Von Mises Stresses

Determination of critical resolved shear stress (CRSS)

Calculation of Critical Resolved Shear Stresses (CRSS) Tensile twinning

Selection of maximum resolved shear stress.

$$\tau = \sum_{i,j} m_i n_j \sigma_{ij}$$

29

CRSS (MPa) from Exp.1

Slip system	Neutron Diffraction - direct method CRSS [MPa]
Basal B {0001}(1120)	35
Prismatic P {1010}(1120)	
Pyramidal π<a> {1011}(1120)	65 - 85
Pyramidal $\pi_1 < c+a > $ {1011}(1123)	

ITUE L

* Direct diffraction measurement of critical resolved shear stresses and stress localisation in magnesium alloy,

A. Baczmański, P. Kot, S. Wroński, M. Wróbel, M. Wroński, J. Pilch, M. Muzyka, K. Wierzbanowski, Y. Zhao, L. Le Joncour, M. François, B. Panicaud, Materials Science & Engineering A, 2021 vol. 801

The role of basal slip in the generation of intergranular stresses in magnesium alloy studied using X-ray diffraction and modelling,

A.Baczmański, M. Wroński, P. Kot, S. Wroński, A. Łabaza, K. Wierzbanowski, A. Ludwik, M. Marciszko-Wiąckowska, Materials & Design 2021 202 ISSN: 0264-1275

Next measurement – PRELUDIUM 20 (wniosek)

39

Previous works interpretation with model

B. Clausen et al. | Acta Materialia 56 (2008) 2456–2468

Fig. 3. Schematic of the in situ compression set-up of the SMARTS instrument.

Voce law - dislocation hardening

$$\hat{ au}^lpha = au_0^lpha + (au_1^lpha + h_1^lpha \gamma_{ac}) \left(1 - \exp\left(-rac{h_0^lpha}{ au_1^lpha} \gamma_{ac}
ight)
ight)$$

Grain interaction depend on model – assumption
Hardening - optimisation

Table 1

CRSS and hardening parameters used for the two assumptions

Assumption	Initial twin fraction	Deformation system	τ ₀ (MPa)	τ ₁ (MPa)	θ ₀ (MPa)	θ ₀ (MPa)
Continuity	N/A	Basal Prism Pyramidal Tensile twin	12 60 100 54	20 20 117 0	40 40 2500 0	0 0 0 0
Fixed initial fraction	3%	Basal Prism Pyramidal Tensile twin	12 60 100 60	20 20 117 0	240 240 2000 0	0 0 0 0

Fig. 8. Measured (line and symbol) and predicted (thick line) elastic lattice strains for the 'Continuity' assumption: (a) parallel to the loading axis; (b) perpendicular to the loading axis; and for the 'FIF' assumption: (c) parallel to the loading axis; and (d) perpendicular to the loading axis.

H. Wang et al./International Journal of Solids and Structures 47 (2010) 2905-2917

Table 1

List of material constants for various self-consistent models.

Model	Mode	τ_0	$ au_1$	ho	h_1	Latent	A ^{th1}	A^{th2}
Affine	Basal	9	1	5000	25	4		
	Prismatic	79	40	590	50	4		
	Pyramidal	100	100	5000	0	2		
	Tensile twin	47	0	0	0	4	0.72	0
Secant	Basal	13	4	5000	30	4		
	Prismatic	73	35	400	60	4		
	Pyramidal	110	83	2500	0	2		
	Tensile twin	31	0	0	0	4	0.82	0
m^{eff} ($m^{eff} = 0.1$)	Basal	17	6	3800	100	4		
	Prismatic	77	33	650	50	4		
	Pyramidal	148	35	9600	0	2		
	Tensile twin	33	0	0	0	4	0.81	0
Tangent	Basal	21	5	3000	140	4		
	Prismatic	90	15	580		4		
	Pyramidal	145	30	9600	70	2		
	Tensile twin	38	0	0	0	4	0.81	0

Q. Chen et al. Materials Science & Engineering A 774 (2020) 138912

Assessment in predictability of visco-plastic self-consistent model with a minimum parameter approach: Numerical investigation of plastic deformation behavior of AZ31 magnesium alloy for various loading conditions

Seminarium Wydziałowe WFiIS AGH, 28.05.2021, Kraków

2909

Comparison with literature

Model + diffraction

H. Wang et al./International Journal of Solids and Structures 47 (2010) 2905–2917

Table 1

List of material constants for various self-consistent models.

Model	Mode	το
Affine	Basal	9
	Prismatic	79
	Pyramidal	100
	Tensile twin	47
Secant	Basal	13
	Prismatic	73
	Pyramidal	110
	Tensile twin	31
m^{eff} ($m^{eff} = 0.1$)	Basal	17
	Prismatic	77
	Pyramidal	148
	Tensile twin	33
Tangent	Basal	21
	Prismatic	90
	Pyramidal	145
	Tensile twin	38

Slip system	CRSS [MPa]
Basal B $\{0001\}\langle 11\overline{2}0\rangle$	~ 30
Prismatic P $\{10\overline{1}0\}\langle 11\overline{2}0\rangle$	65-85 (?)
Pyramidal <a> {1011}(1120)	65-85 (?)
Pyramidal <c+a> $\{10\overline{1}1\}\langle 11\overline{2}3\rangle$</c+a>	~ 110
Tensile Twin $\{10\overline{1}2\}\langle\overline{1}011\rangle$	~ 50

Direct method

Podsumowanie

- Dla materiałów fazowych nasza metoda pozwala określić co dzieje się w każdej z faz materiału, jak te fazy oddziałują (Al/SiC – relaksacja naprężeń termicznych).
- Dla materiałów steksturowanych możemy opisać lokalizację naprężeń na grupach krystalitów i opisać aktywowanie poślizgów i bliźniakowania
- W przypadku badanego stopu magnezu występują 3 typy ziaren miękkie, twarde i ulegające bliźniakowaniu (zależy to od sekwencji uruchamianych poślizgów i bliźniakowania)
- 4. Wyniki badań są jednoznaczne nie potrzebujemy dodatkowych założeń używanych w modelu. Możliwa jest weryfikacja modeli

Podziękowania:

Praca została częściowo dofinansowana z grantów Narodowego Centrum Nauki nr UMO-2017/25/B/ST8/00134 i UMO-2015/19 / D / ST8 / 00818. Przemysław Kot uzyskał częściowe wsparcie w ramach projektu unijnego POWR.03.02.00-00-I004 / 16. Eksperymenty z dyfrakcją neutronów były współfinansowane przez Pełnomocnika Rządu RP w ZIBJ w Dubnej w ramach Projektu nr 75/28/2020.

Dziękuję za uwagę.