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Introduction



Static Program Analysis

Static program analysis consists of automatically

discovering properties of a program that hold for

all possible execution paths of the program.

Static program analysis is not

• Testing: manually checking a property for 

some execution paths

• Model checking: automatically checking a 

property for all execution paths



Program Analysis for what?

• Optimizing compilers

• Semantic preprocessing:

– Model checking

– Automated test generation

• Program verification



Program Verification

• Check that every operation of a program 

will never cause an error (division by zero, 

buffer overrun, deadlock, etc.)

• Example:
int a[1000];

for (i = 0; i < 1000; i++) {

a[i] = … ;  // 0 <= i <= 999

}

a[i] = … ;    // i = 1000;buffer overrun

safe operation



Incompleteness of Program Analysis

• Discovering a sufficient set of properties 
for checking every operation of a program 
is an undecidable problem!

• Every non trivial behavioral property has 
(at least) NP complexity

• False positives: operations that are safe 
in reality but which cannot be decided safe 
or unsafe from the properties inferred by 
static analysis.



Precision versus Efficiency

• Precision and computational complexity 

are strongly related

• Tradeoff precision/efficiency: limit in the 

average precision and scalability of a 

given analyzer

• Greater precision and scalability is 

achieved through specialization

Precision: number of program operations that 

can be decided safe or unsafe by an analyzer.



Soundness

• What guarantees the soundness of the analyzer 

results?

• In dataflow analysis and type inference the 

soundness proof of the resolution algorithm is 

independent from the analysis specification

• An independent soundness proof precludes the 

use of test-and-try techniques

• Need for analyzers correct by construction



Abstract Interpretation

• A general methodology for designing static 

program analyzers that are:

– Correct by construction

– Generic

– Easy to fine-tune

• Scalability is difficult to achieve but the 

payoff is worth the effort!



Approximation

• An approximation of memory configurations 

is first defined

• Then the approximation of all atomic 

operations

• The approximation is automatically lifted to 

the whole program structure

The core idea of Abstract Interpretation is the 

formalization of the notion of approximation



Overview of Abstract Interpretation

• Start with a formal specification of the program 

semantics (the concrete semantics)

• Construct abstract semantic equations w.r.t. a 

parametric approximation scheme

• Use general fixpoints algorithms to solve the 

abstract semantic equations

• Try-and-test various instantiations of the 

approximation scheme in order to find the best fit



The Methodology of Abstract 

Interpretation
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Lattices and Fixpoints

• A lattice (L, ⊑, ⊥, ⊔, ⊤, ⊓) is a partially ordered 

set (L, ⊑) with:

– Least upper bounds (⊔) and greatest lower 

bounds (⊔) operators

– A least element ―bottom‖: ⊥

– A greatest element ―top‖: ⊤

• L is complete if all least upper bounds exist

• A fixpoint X of F: L → L satisfies F(X) = X

• We denote by lfp F the least fixpoint if it exists



Fixpoint Theorems

• Knaster-Tarski theorem: If F: L → L is 

monotone and L is a complete lattice, the set of 

fixpoints of F is also a complete lattice.

• Kleene theorem: If F: L → L is monotone, L is a 

complete lattice and F preserves all least upper 

bounds then lfp F is the limit of the sequence:

F0 =  ⊥

Fn+1 =  F (Fn)
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Concrete Semantics
Small-step operational semantics:  (

Example:
1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit

1, n n 0 n 0 n 1

n 1 n 1000

s =  program point , env s s'

Undefined value



Control Flow Graph

n = 0

n ≥ 1000

1

2

3

4

5

n < 1000

n = n + 1

1:  n = 0;

2:  while n < 1000 do

3:    n = n + 1;

4:  end

5:  exit



Transition Relation

Control flow graph:   ⓘ ⓙ

Operational semantics:  〈ⓘ, ε〉 → 〈ⓙ,〚op〛ε 〉 

op

Semantics of op
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Collecting Semantics

• The set of all descendants of the initial state

• The set of  all descendants of the initial state 
that can reach a final state

• The set of all finite traces from the initial state

• The set of all finite and infinite traces from the 
initial state

• etc.

The collecting semantics is the set of 
observable behaviours in the operational 
semantics. It is the starting point of any 
analysis design.



Which Collecting Semantics?

• Buffer overrun, division by zero, arithmetic 

overflows: state properties

• Deadlocks, un-initialized variables: finite 

trace properties

• Loop termination: finite and infinite trace 

properties



State properties

S = {s | s
0 

s}

The set of descendants of the initial state s
0
:

S = lfp F

F (S) = {s
0
} s' | s S: s s'

Theorem: F : ( ( ), ) ( ( ), )



Example

S = { 1, n n 0 n 0 n 1

n 1 n 1000 }

1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit



Computation

• F0 = ∅

• F1 = {〈1,n⇒Ω〉 }

• F2 = {〈1,n⇒Ω〉, 〈2,n⇒0〉 }

• F3 = {〈1,n⇒Ω〉, 〈2,n⇒0〉, 〈3,n⇒0〉 }

• F4 = {〈1,n⇒Ω〉, 〈2,n⇒0〉, 〈3,n⇒0〉, 〈4,n⇒1〉 }

• ...
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Partitioning

• Σ = Σ1 ⊕ Σ2 ⊕ ... ⊕ Σn

• Σi = {〈k, ε〉 ∈ Σ | k = i }

• F(S1, ..., Sn)0 =  { s0 }

• F(S1, ..., Sn)i = {s' ∈ Si | ∃j ∃s ∈ Sj: s s'}

i.e.

F(S1, ..., Sn)i = {〈i,〚op〛ε〉 | ⓙ ⓘ ∈ CFG (P)}

We partition the set S of states w.r.t. program 
points:

op



Illustration

〈1, e1〉
〈1, e2〉

〈j, ε1〉

〈j, ε2〉

〈i,〚op〛ε1〉

〈i,〚op〛ε2〉

Σ1

Σj

Σi

ΣΣ

F

Sj

S1

Si



Semantic Equations

• Notation: Ei = set of environments at 

program point i

• System of semantic equations:

• Solution of the system S = lfp F

E
i
= U {〚op〛Ej | ⓙ ⓘ ∈ CFG (P) }

op



Example
1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit

E
1

= {n }

E
2

=〚n = 0〛E
1

E
4

E
3

=  E
2

]- , 999]

E
4

=〚n = n + 1〛E
3

E
5

=  E
2

[1000, [



Example

n = 0

n ≥ 1000

1

2

3

4

5

n < 1000

n = n + 1

E
5

=  E
2

[1000, [

E
1

= {n }

E
4

=〚n = n + 1〛E
3

E
3

=  E
2

]- , 999]

E
2

=〚n = 0〛E
1

E
4

1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit



Methodology

Abstract 

Semantics

Collecting 

Semantics

Partitioning

Concrete 

Semantics

Abstract 

Domain

Abstract 

Domain

Iterative

Resolution

Algorithms

Tuners



Approximation

Problem: Compute a sound approximation S#

of S

S S#

Solution: Galois connections



Galois Connection

(L
1
, )                                 (L

2
, )

L
1
, L

2
two lattices

● x y : (x) y  x (y)

● x y : x (x)  &  o (y) y

Abstract domain



Fixpoint Approximation

L
1

L
2

L
2

L
1

o F o

F

Theorem:
lfp F (lfp o F o )

Abstract 
computation

Concrete 
computation



Abstracting the Collecting Semantics

• Find a Galois connection:

• Find a function:   o F o F#

( ( ), )                                 ( , )



Abstract Algebra

• Notation: E the set of all environments

• Galois connection:

• , approximated by , 

• Semantics〚op〛approximated by〚op〛#

( (E), )                                 (E#, )

o〚op〛o 〚op〛#



Abstract Semantic Equations

1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end;

5:  exit;

E
1
# =  {n })

E
2

# =〚n = 0〛# E
1
# E

4
#

E
3

# =  E
2
# ]- , 999])

E
4

# =〚n = n + 1〛# E
3
#

E
5

# =  E
2
# [1000, [)
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Abstract Domains

• Signs (non relational)

x +,  y -, ...

• Intervals (nonrelational):

x [3, 9],  y [-23, 4], ...

• Polyhedra (relational):

x + y - 2z  10,  ...

• Difference-bound matrices (weakly relational):

y - x  z - y  

Various kinds of approximations:



Example: intervals

• Iteration 1: E
2
# = [0, 0]

• Iteration 2: E
2

# = [0, 1]

• Iteration 3: E
2

# = [0, 2]

• Iteration 4: E
2
# = [0, 3]

• ...

1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit



Problem

How to cope with lattices of infinite height?

Solution: automatic extrapolation operators



Methodology

Abstract 

Semantics

Collecting 

Semantics

Partitioning

Concrete 

Semantics

Abstract 

Domain

Abstract 

Domain

Iterative

Resolution

Algorithms

Tuners



Widening operator

• Abstract union operator:

x y :  x x y  &   y x y

• Enforces convergence:  (x
n
)
n 0

Lattice (L, ):  L L L

y
0

=  x
0

y
n + 1

=  y
n

x
n+1

(yn)n≥0 is ultimately stationary



Widening of intervals

[a, b] [a', b']

● If  a a' then  a else   -

● If  b' b then  b else  +

➥ Open unstable bounds (jump over the fixpoint)



Widening and Fixpoint

fixpoint

widening



Iteration with widening
1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit

(E
2
#)

n+1
= (E

2
#)

n
(〚n = 0〛# (E

1
#)

n
(E

4
#)

n
)

Iteration 1 (union): E
2

# = [0, 0]

Iteration 2 (union): E
2

# = [0, 1]

Iteration 3 (widening): E
2
# = [0, + ] stable



Imprecision at loop exit

1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  exit; t[n] = 0; // t has 1500 elements

● E
5
# = [1000, [ 

False positive!!!



Narrowing operator

● Abstract intersection operator:

x y :  x y x y

● Enforces convergence:  (x
n
)
n 0

Lattice (L, ):  L L L

y
0

=  x
0

y
n + 1

=  y
n

x
n+1

(yn)n≥0 is ultimately stationary



Narrowing of intervals

[a, b] [a', b']

● If  a = - then   a' else  a

● If  b = + then  b' else  b

➥ Refines open bounds



Narrowing and Fixpoint

fixpoint

widening

narrowing



Iteration with narrowing
1:  n = 0;

2:  while n < 1000 do  

3:    n = n + 1;

4:  end

5:  t[n] = 0;

(E
2
#)

n+1
= (E

2
#)

n
(〚n = 0〛# (E

1
#)

n
(E

4
#)

n
)

Beginning of iteration: E
2

# = [0, [

Iteration 1: E
2

# = [0, 1000] stable

Consequence: E
5

# = [1000, 1000]
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Tuning the abstract domains
1:  n = 0;

2:  k = 0;

3:  while n < 1000 do  

4:    n = n + 1;

5:    k = k + 1;

6:  end

7:  exit

● Intervals: 

E
4
# = n k [ 

● Convex polyhedra:

E
4
# = n k n - k = 0 
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