Dyfrakcyjny pomiar naprężeń w mikro- i makroskali

Elżbieta Gadalińska (ILot) Andrzej Baczmański (WFiIS, AGH) Jerzy Kaniowski (ILot) Sebastian Wroński (WFiIS,AGH) Rim Dakhlaoui (ENSAM, Paris) Léa Le Joncour (UTT, Troyes)

Instytut Lotnictwa

- Cztery piony merytoryczne
 - Centrum Nowych Technologii
 - Engineering Design Center
 - Centrum Badań Materiałów i Konstrukcji
 - Net Instytut

SPINA

Sympozjum Pomiarów i Interpretacji Naprężeń

- Inicjatywa Instytutu Lotnictwa, Oddziału Metali Lekkich Instytutu Metali Nieżelaznych w Skawinie i dr inż. Andrzeja Wojtasa (METLAB Proto)
- Cel: integracja środowiska naukowców zajmujących się metodą, rozpowszechnianie wiedzy o metodzie i zainteresowania nią przemysłu, wymiana doświadczeń i "dobrych praktyk"

SPINA

Sympozjum Pomiarów i Interpretacji Naprężeń

- Uczestnicy 1. Spotkania (ILot)
 - AGH (Wydział Fizyki i Informatyki Stosowanej i Wydział Inżynierii Metali i Informatyki Przemysłowej)
 - Instytut Lotnictwa
 - Oddział Metali Lekkich Instytutu Metali Nieżelaznych w Skawinie
 - IMIM PAN
 - Politechnika Rzeszowska
 - Politechnika Łódzka
 - Metlab Sp. Z o.o.
- Uczestnicy 2. Spotkania (OML w Skawinie)
- +
- Politechnika w Pradze
- Uniwersytet Śląski
- Politechnika Częstochowska

Naprężenia w materiałach polikrystalicznych klasyfikacja

• I rzędu

• II rzędu

 $\bigcirc ph_{l} \in V_{ph1} \qquad \bigcirc ph_{2} \in V_{ph2}$

• III rzędu

Metodologia pomiarów

Odkształcenia sieci krystalicznej i naprężenia

12000

Promieniowanie rentgenowskie

Promieniowanie neutronowe

Pomiar dyfrakcyjny odkształceń sieci krystalicznej idea

Jak wyznaczyć naprężenia ?

 $< \varepsilon(\varphi, \psi) >_{hkl} = F_{ij}(hkl, \varphi, \psi) \sigma_{ij}$

 $F_{ii}(hkl, \varphi, \psi)$ dyfrakcyjne stałe sprężyste

Najprostszy przypadek - próbka bez tekstury dla $\varphi = 0^{\circ}$: $< d(\psi, \varphi) >_{hkl} = \frac{1}{2} s_2 d_{hkl}^{0} \sigma_{11} \sin^2 \psi + s_1 d_{hkl}^{0} (\sigma_{11} + \sigma_{22}) + d_{hkl}^{0}$

czyli:

$$< d(\psi, \phi) >_{hkl} = a \sin^2 \psi + b$$
 gdzie:

$$a = \frac{1}{2} s_2 \sigma_{11} d^0_{\{hk1\}}$$

 $L_3 \| Q$ - scattering vector

z niepewnością pomiaru:

$$\Delta_{\sigma_{11}} = \frac{2a}{d_{\{hkl\}}^0 s_2} \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta d_{\{hkl\}}^0}{d_{\{hkl\}}^0}\right)^2}$$

Objętość próbkowania

~1 mm

~10 µm

σ₃₃=0

Promieniowanie neutronowe

Promieniowanie rentgenowskie

Promieniowanie synchrotronowe

	NEUTRONS λ=1.29 Å (E≈50 meV)	X− RAY λ=1.54ÅCuKα (E≈8 keV)	SYNCHROTRON λ=0.15Å (E≈80 keV)
ELEMENT	(mm)	(mm)	(mm)
AI	70.5	0.5x10 ⁻¹	15
Fe	6.2	0.29x10 ⁻²	1.8
Ni	3.7	0.17x10 ⁻²	1.4
W	6.6	0.21x10 ⁻²	1

ABSORPCJA 50%

Techniki pomiarowe z użyciem różnych rodzajów promieniowania

Promieniowanie rentgenowskie - pomiary powierzchniowe

Promieniowanie neutronowe Geometria omega

G5.2 Saclay: x, y : +/-75 mm, z: 300 mm (precyzja 0.001 mm) masa próbki: 500 kg

Promieniowanie neutronowe Źródło spalacyjne

Time of flight (TOF)

$$\lambda = \frac{h}{m_n v} = \frac{ht}{m_n L}$$
$$n\lambda = 2d_{hkl} \sin \theta$$

Promieniowanie synchrotronowe ESRF

- Wysokoenergetyczne promieniowanie synchrotronowe (90keV)
- Tryb transmisyjny ($2\Theta = 1,8^{\circ}-6^{\circ}$)
- Krótki czas akwizycji (kilka sekund)

Uzyskane wyniki

Moje wcześniejsze prace EUREKA! IMPERJA 2007 - 2011

IMPROVING THE FATIGUE PERFORMANCE OF RIVETED JOINTS IN AIRFRAMES

- Cel: poprawa trwałości zmęczeniowej połączeń nitowych poprzez:
 - Wydłużenie czasu eksploatacji
 - Mniejszą liczbę inspekcji
 - Zmniejszenie kosztów operacyjnych konstrukcji lotniczych

• Środki:

- Zbadanie i udoskonalenie procesu nitowania
- Udoskonalenie metod przewidywania trwałości zmęczeniowej

EUREKA! IMPERJA Pomiar gradientu naprężeń wokół nitów - tensometria

EUREKA! IMPERJA Pomiar gradientu naprężeń wokół nitów - tensometria

EUREKA! IMPERJA Pomiar gradientu naprężeń wokół nitów - nit z łbem wpuszczanym bez kompensatora

Grant realizowany pod opieką promotora dr hab. A. Baczmańskiego

Grant NCN: PRELUDIUM(VIII.2012)

> finansowanie projektów badawczych, realizowanych przez osoby rozpoczynające karierę naukową nieposiadające stopnia naukowego doktora

Badanie własności mikromechanicznych polikrystalicznych materiałów dwufazowych z wykorzystaniem metod dyfrakcyjnych oraz modeli krystalograficznych

Eksperymenty w ISIS, LLB(neutrony) ESRF(synchrotron)

- Główne cele pracy doktorskiej oraz grantu NCN
 - Badanie <u>własności mikromechanicznych</u> dla ziaren w próbkach poddanych odkształceniom plastycznym
 - Wyznaczenie <u>tensora lokalizacji naprężeń</u> w materiale polikrystalicznym podczas obciążenia mechanicznego
 - Badanie efektów mechanicznych <u>mikrozniszczeń</u> powstających podczas odkształceń plastycznych w materiałach polikrystalicznych
- Badanie materiały:
 - Stal dwufazowa (ferryt i austenit) badania zrealizowane,
 - Kompozyty: Al/SiC, Ti/TiC (w planie)

Idea pomiaru

Pomiar dyfrakcyjny

 $n\lambda = 2 < d >_{\{hkl\}} \sin \theta$

Model samouzgodniony Własności mechaniczne w skali ziaren podczas deformacji elastoplastycznej $\mathcal{E}^{g(el)}$

Odkształcenie w zakresie elastycznym:

 $\sigma_{ij}^{g} = c_{ijkl}^{g} \, \varepsilon_{kl}^{g(el)}$

ij

Odkształcenie w zakresie elastoplastycznym:

 $\mathcal{E}_{ii}^{g} = \mathcal{E}_{ii}^{g(el)} + \mathcal{E}_{ii}^{g(pl)}$

Chcemy wyznaczyć τ - krytyczne naprężenia ścinające potrzebne do uaktywnienia poślizgów oraz zależność τ od stopnia deformacji (dla ziaren lub grup ziaren)

Model samouzgodniony Tensor lokalizacji naprężeń / odkształceń

$$\Delta \varepsilon_{ij}^{g} = A_{ijkl}^{g} \Delta E_{kl} \quad \Delta \sigma_{ij}^{g} = B_{ijkl}^{g} \Delta \Sigma_{kl}$$

Chcemy wyznaczyć tensor lokalizacji naprężeń **B**

Czy możliwe jest zaobserwowanie efektów mechanicznych zniszczeń zachodzących w ziarnach?

Materiał (ISIS, LLB, ESRF)

<u>Stal nierdzewna:</u>
50% ferryt
50% austenit

• <u>Skład:</u>

0,015C; 1,6Mn; 22,4Cr; 5,4Ni; 2,9Mo; 0,12Cu; 0,001S; 0,17N

<u>obróbka cieplna</u>

a) wygrzewanie w 1050°Ci szybkie chłodzeniew wodzie

b) wyżarzanie w temperaturze 400°C przez 1000h (starzenie) i powolne chłodzenie w powietrzu

Tekstura

ferryt

austenit

Wcześniejsze badania w ISIS i LLB

prace doktorskie: Rim Dakhlaoui (2006,ENSAM, Paris) oraz Léa Le Joncour (2011, Universytet w Troyes, Francja)

ISIS, Engine-Xpromieniowanie neutronowe; źródło spalacyjne

Mikromechaniczne własności stali dwufazowej

- Pomiar "in situ" jednoosiowe rozciąganie
- TOF na ENGINE-X w ISIS

 Γ - plastyczność austenitu (FCC) Ω - plastyczność ferrytu (BCC)

A.Baczmański and C. Braham, Acta Materialia, **59**, 1133-1142 (2004) R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski and E.C. Oliver, Acta Materialia, 54, 5027-5039 (2006)

Mikromechaniczne własności stali dwufazowej- LLB neutrony(wpływ procesu termicznego)

A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, Arch. of Metall. and Mat., 53, 89-96 (2008)

Mikromechaniczne własności stali dwufazowej- ISIS neutrony

Powyżej punktu A widoczny efekt zniszczeń

Prawo Voce w modelu samouzgodnionym

$$\tau^{gr} = \tau_0^{ph} + \left(\tau_1^{ph} + \theta_1^{ph} \xi^{gr} \right) \left[1 - \exp\left(-\frac{\theta_0^{ph}}{\tau_1^{ph}} \xi^{gr}\right) \right]$$

 τ^{ph} – naprężenie krytyczne dla ziarna "gr" w funkcji sumy odkształceń ścinajacych w ziarnie " ξ^{gr} " τ_0^{ph} – poczatkowe naprężenie krytyczne dla fazy "ph" θ_0^{ph} - początkowe umocnienie dla fazy "ph" $\tau_1^{ph} i \theta_1^{ph}$ – opisują nieliniowość umocnienia

The pulline cers of plustic deformation (1)	The parameters	of	plastic	deformation	(MPa)
---	----------------	----	---------	-------------	-------

Material		UR45N (quenched)	UR45N (aged)
$\tau_0^{(\text{ph})}$ (MPa)	Austenite	140	140
	Ferrite	220	350
$\theta_0^{(\text{ph})}$ (MPa)	Austenite	225	225
	Ferrite	110	110
$\tau_1^{(\text{ph})}$ (MPa)	Austenite	Not	280
	Ferrite	adjusted	140
$\theta_1^{(ph)}$ (MPa)	Austenite	-	0.3
• • •	Ferrite		0.1

A. Baczmanski, L. Le Joncour, B. Panicaud, M. Francois, C. Braham,B. A. M. Paradowska, S. Wroński, S. Amara and R. Chirone,

Journal of Applied Crystallography, 44, (2011) 966-982.

Wyznaczanie tensora lokalizacji ISIS neutrony

 $\Delta \sigma_{ii} = B_{ii11} \Delta \Sigma_{11}$

Obliczamy iloraz różnicowy:

A.Baczmański, A.Gaj, L.Le Joncour, S.Wroński, M.Francois, B.Panicaud, C.Braham, A.M.Paradowska Philosophical Magazine, **92**(2012) 3015-3035

Wyznaczanie tensora lokalizacji ISIS neutrony

 $\Delta \sigma_{ii} = B_{ii11} \Delta \Sigma_{11}$

Obliczamy iloraz różnicowy:

A.Baczmański, A.Gaj, L.Le Joncour, S.Wroński, M.Francois, B.Panicaud, C.Braham, A.M.Paradowska Philosophical Magazine, **92**(2012) 3015-3035

Wyznaczanie tensora lokalizacji (LLB) praca doktorska E. Gadalińska

incident LLB, Saclay, 6T1, neutrony, dyspersja $2\theta \lambda = 1.159$ A Objętość próbkowania 10x10x4 mm³

Metoda grup krystalitów

stress for group of crystals

measured lattice strains

g ->

single crystal cosines elastic constants

{uvw}<mno>

Korzyść: tensor naprężeń dla kilku orientacji Problem: długi pomiar (jeden punkt kilkanaście godzin)

Wyznaczanie tensora lokalizacji (LLB) praca doktorska E. Gadalińska

LLB, Saclay, 6T1, neutrony, dyspersja $2\theta \lambda$ = 1.159 A Objętość próbkowania 10x10x4 mm³

 $n\lambda = 2d_{hkl}\sin\theta$

LLB- wyniki makromechaniczne (z użyciem metody DIC oraz tensometru)

$$\tau^{gr} = \tau_0^{ph} + \left(\tau_1^{ph} + \theta_1^{ph} \xi^{gr} \right) \left[1 - \exp\left(-\frac{\theta_0^{ph}}{\tau_1^{ph}} \xi^{gr}\right) \right]$$

Motori	UR45N	
Iviateri	(quenched)	
$\tau^{(ph)}$ (MPa)	austenite	110
	ferrite	350
$A^{(ph)}$ (MPa)	austenite	280
	ferrite	140
$\tau^{(ph)}$ (MPa)	austenite	
	ferrite	not
$A^{(ph)}$ (MPa)	austenite	adjusted
	ferrite	

Naprężenia dewiatoryczne

Metoda grup krystalitówa model samouzgodniony porównanie

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11}^{d} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22}^{d} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}^{d} \end{bmatrix} + \begin{bmatrix} \sigma^{h} & 0 & 0 \\ 0 & \sigma^{h} & 0 \\ 0 & 0 & \sigma^{h} \end{bmatrix}$$

dewiatoryczne + hydrostatyczne

$$\sigma^{h} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$$
Naprężenia

TENSOR LOKALIZACJI NAPRĘŻEŃ uzyskany bezpośrednio z eksperymentu dla kierunków o SILNEJ TEKSTURZE

B_{ijkl} (deviatoric) model →lines

B_{ijki} (deviatoric) experiment → points

WYZNACZYLIŚMY tensor lokalizacji B DOBRA ZGODNOŚC Z MODELEM ale mało punktów pomiarowych Wnioski z dotychczasowych eksperymentów

- Pomiary dyfrakcyjne w połączeniu z modelem samouzgodnionym pozwalają badać własności mikromechaniczne polikryształów.
- Zaobserwowano efekty mechaniczne zniszczeń w fazie ferrytycznej
- Możliwy jest pomiar pełnego tensora naprężeń dla materiałów o silnej teksturze (metoda grup krystalitów).
- Ewolucja naprężeń hydrostatycznych (pomiędzy dwiema fazami w stali dwufazowej) nie może być przewidziana przez model samouzgodniony

Promieniowanie synchrotronowe ESRF (ID11) - pomiary wykonane w listopadz<u>ie 2012</u>

•Wysokoenergetyczne promieniowanie synchrotronowe (90keV, l=0.14 A), tryb transmisyjny (2 Θ =1,8°-6°)

•Skanowanie z objętością próbkującą 0.1 x 0.1 x 1.5 mm³ umożliwiły pomiary w przewężeniach, tuż przed zerwaniem próbki (badanie mikrozniszczeń)

Promieniowanie synchrotronowe ESRF (ID11) - pomiary wykonane w listopadzie 2012

- Krótki czas akwizycji (kilka sekund). Możliwe pomiary "on line" czyli w trakcie deformacji
- Tensor lokalizacji naprężeń może zostać określony z większą dokładnością. Pomiary z dużą gęstością punktów.
- Pomiary wykonano dla próbek ze stali dwufazowej, stali perlitycznej (10% cementytu – druga faza), tytanu, częściowo dla Al/SiC

Moje dotychczasowe prace:

PUBLIKACJE:

1. Gadalińska E., Kaniowski J., Wronicz W. Porównanie modelowania MES z wykorzystaniem elementów bryłowych i osiowosymetrycznych na przykładzie zamykania nitu na prasie, **Biuletyn Wojskowej Akademii Technicznej**, nr 4/2010 (660). str. 379-398.

2.M. François, B. Panicaud, L. Le Joncour, A. Baczmański, A. Paradowska, S. Wroński, E. Gadalińska, Comparison of strain/stress behaviour of a duplex stainless steel between mesoscopic and macroscopic scales by neutron measurements extended to the necking range. *Thin Solid Films (2012)*, http://dx.doi.org/10.1016/j.tsf.2012.07.065

- w druku

KONFERENCJE:

1. I Conference "Fatigue of Aircraft Structures", Warszawa 15.I.2008. Referat: Gadalińska E., Kaniowski J., Wojtas A. *Dyfraktometryczne badania naprężeń własnych wokół nitów*.

2. 11th European Powder Diffraction Conference, EPDIC-11, Warszawa 18–22.IX.2008.

3. II Conference "Fatigue of Aircraft Structures", Warszawa 15 - 16.I.2009. – oral

4. 31st Conference and 25th Symposium of the International Committee on Aeronautical Fatigue ICAF 2009, Rotterdam 25 – 29.V.2009. Plakat: Gadalińska E., Kaniowski J., Wojtas A. *Dyfraktometryczne pomiary naprężeń na stopach aluminium. Optymalizacja parametrów pomiarowych.* –*poster*

5. E. Gadalińska, J. Kaniowski, A. Baczmański, W. Wronicz, Stress distribution around rivets. Comparison of results of strain gauges and X-ray stress measurements. The novel methodology presentation. 9th International Conference on Residual Stresses, ICRS 9, October 7-9, 2012, Conference Centre Garmisch-Partenkirchen, Germany. – *oral*

6. E. Gadalińska, J.Kaniowski, A.Baczmański, S.Wronski, M.Wróbel, Methodological Aspects of Stress Measurements with X-ray Diffraction, XXV Sympozjum Mechaniki Eksperymentalnej Ciała Stałego im. Prof. Jacka Stupnickiego, 17-20 Października 2012, Jachranka koło Warszawy. –*poster*

7. A. Baczmański, E. Gadalińska, S. Wroński, L. Le Joncour, B. Panicaurd, M. François, C. Braham , A. Paradowska, V. Klosek, Differential Method for Study of Stress Localization Using Neutron Diffraction. 9th International Conference on Residual Stresses, ICRS 9, October 7-9, 2012, Conference Centre Garmisch-Partenkirchen, Germany. - *oral*

Materiały konferencyjne

1. Gadalińska E., Kaniowski J., Wojtas A. *Dyfraktometryczne pomiary naprężeń na stopach aluminium. Optymalizacja parametrów pomiarowych, 25. Sympozjum ICAF, Rotterdam 27-29 maj 2009.*

2. Gadalińska E., Kaniowski J. Pomiar naprężeń własnych metodą dyfraktometrii rentgenowskiej na próbkach aluminiowych. Dobór parametrów pomiarowych, EUROPEAN KONES 2009.

3. Gadalińska E., Korzeniewski B., Kaniowski J. Metoda dyfraktometrii rentgenowskiej przy pomiarze naprężeń własnych na próbkach wykonanych ze stopów aluminium - dobór i optymalizacja parametrów pomiarowych, XXIV Sympozjum Mechaniki Eksperymentalnej Ciała Stałego, Wrocław, 22 września 2010.

4. Gadalińska E., Kaniowski J., Dyfraktometryczne pomiary naprężeń własnych wokół nitów, XII Krajowa Konferencja Naukowo-Szkoleniowa Mechaniki Pękania, Kraków, 6-9 września 2009.

5.Gadalińska E., Wronicz W., Kaniowski J., Korzeniewski B. Obliczenia i weryfikacja eksperymentalna naprężeń własnych w połączeniu nitowym płatowca samolotu, XXIII Sympozjum Zmęczenie i Mechanika Pękania, Bydgoszcz – Pieczyska, maj 2010
6. Korzeniewski B., Kaniowski J., Gadalińska E., Methodology of residual stress measurements for rivet joints, 4 Conference Fatigue of Aircraft Structures, Warszawa, 13-14 styczeń 2011.

7. Wronicz W., Kaniowski J., Korzeniewski B., Gadalińska E., *Experimental and numerical study of stress and strain field around the rivet, 26 th ICAF Symposium – Montréal, 1–3 czerwiec 2011.*

Dziękuję za uwagę

Sprawdzenie metody grup krystalitów

modelowanie dla 20000 rotujących ziaren (początkowe orientacje dane z eksperymentu)

Stiffness and tagent modulus

Model samouzgodniony Deformacja sprężysta:

Model samouzgodniony Deformacja elastoplastyczna:

DEC Próbka kwasi-izotropowa

Reuss

Samouzgodniony

Samouzgodniony (free surface)

Prawo Voce dla ziarna

 $\begin{aligned} \boldsymbol{\tau}^{ph} &- naprężenie \, krytyczne \, dla \, ziarna \, "gr" \\ w \, funkcji \, sumy \, odkształceń ścinajacych w ziarnie \, "\boldsymbol{\xi}^{gr"} \\ \boldsymbol{\tau}^{ph}_{0} &- poczatkowe \, naprężenie \, krytyczne \, dla \, fazy \, "ph" \\ \boldsymbol{\theta}^{ph}_{0} &- początkowe \, umocnienie \, dla \, fazy \, "ph" \\ \boldsymbol{\tau}^{ph}_{1} \, i \, \boldsymbol{\theta}^{ph}_{1} &- opisują \, nieliniowość \, umocnienia \end{aligned}$

$$< d(\phi,\psi)_{>_{\{hkl\}}} = d^{0}_{\{hkl\}} \left\{ \frac{1}{2} s_{2} \left\{ \sigma^{M}_{11} - \sigma^{M}_{33} \right\} \cos^{2} \phi + \sigma^{M}_{22} - \sigma^{M}_{33} \right\} \sin^{2} \phi + \sigma^{M}_{12} \sin^{2} \phi - \sin^{2} \psi$$
$$+ s_{1} \left\{ \sigma^{M}_{11} + \sigma^{M}_{22} + \sigma^{M}_{33} + \frac{1}{2} s_{2} \sigma^{M}_{33} + \frac{1}{2} s_{2} \left\{ \sigma^{M}_{13} \cos \phi + \sigma^{M}_{23} \sin \phi \right\} \sin^{2} \psi \right\} + d^{0}_{\{hkl\}}$$