ANALIZA MIKROUSZKODZEŃ W OBIEKTACH ZABYTKOWYCH PRZY UŻYCIU METOD OPTYCZNYCH I AKUSTYCZNYCH

MICHAŁ ŁUKOMSKI

Obszary badań nauk ścisłych w ochronie dziedzictwa

 przemiany w materiałach i obiektach zabytkowych

 techniki i procedury zapobieganie niszczeniu

 bezpieczne udostępnianie

Gentile da Fabriano, (ok. 1370-1427), tempera na desce

Powstawanie i narastanie uszkodzeń w obiektach wykonanych z materiałów higroskopijnych

sorpcja/desorcja pary wodnej spowodowana zmianą wilgotności względnej otoczenia

odpowiedź metryczna materiałów

powstanie naprężeń na granicach warstw

uszkodzenia: pękanie i odspajanie

Powstawanie i narastanie uszkodzeń w obiektach wykonanych z materiałów higroskopijnych

Zmiany wywołane bodźcami klimatycznymi – *powolne, kumulacyjne*

Cechy systemu pomiarowego: czułość; możliwość częstego powtarzania pomiarów Bezpośrednie metody śledzenia narastania mikro-uszkodzeń wywołanych przez bodźce klimatyczne

- Interferometria plamkowa
- Emisja akustyczna
- Interferencyjne siatki Bragga

Interferometria plamkowa - digital speckle pattern interferometry (DSPI)

- wykrywanie uszkodzeń powierzchni
- charakterystyka wykrytych uszkodzeń
- monitorowanie zmian w czasie

wysoka czułość łatwość użycia automatyczna analiza wyników pomiarowych

DSPI ze wzbudzeniem termicznym

- Bardzo czuła
 ale
- niepowtarzalna
- jakościowa

Time-averaged DSPI – zasada działania

$$I_{01}(r) = I_i + I_r + 2\sqrt{I_i I_r} \cos\left[\varepsilon(x, y)\right]$$

$$I_{02}(r) = I_i + I_r + 2\sqrt{I_i I_r} \cos\left[\varepsilon(x, y) + \Delta\varepsilon(x, y)\right]$$
$$I(r) = I_{02}(r) - I_{01}(r)$$

Przesunięcie powierzchni obiektu o δz powoduje powstanie dodatkowej różnicy faz

$$\Delta \varepsilon(r) = \frac{4\pi \, \delta_z(x, y)}{\lambda}$$

 $\Delta \varepsilon(r) = 2n\pi$ $\Delta \varepsilon(r) = (2n+1)\pi$

maksymalna korelacja minimalna korelacja

Time-averaged DSPI – analiza drgań

wibracja obiektu na jednej częstotliwości:

$$\Delta \varepsilon(r,\omega) = \frac{4\pi \,\delta z(r)}{\lambda} \cos(\omega t)$$

 $I_{\omega}(r) = \int I(r) dt$

$$I_{\omega}(r) = I_i + I_r + 2\sqrt{I_i I_r} \cos\left[\varepsilon(r)\right] J_0\left(\frac{4\pi}{\lambda}\delta_z(r)\right)$$

Time-averaged DSPI – analiza fazowa

$$I = I_r + I_o + 2\sqrt{I_r I_o} \cos[\varepsilon(r)] J_0\left(\frac{4\pi}{\lambda}a\right)$$

phase stepping algorithm

$$I = 2\sqrt{I_r I_o} J_0 \left(\frac{4\pi}{\lambda}a\right)$$

Rejestrowane natężenie światła jest niemonotoniczną funkcją amplitudy wibracji obiektu

Pęknięcia i odspojenia warstwy malarskiej

Analiza jest tylko częściowo automatyczna.

Wymaga:

- Podziału na oddzielnie drgające fragmenty powierzchni
- Określenia pozycji pierwszego maksimum funkcji J₀ w rejestrowanym obrazie interferencyjnym

Amplituda wibracji ~ ciśnienie

Wykonywanie serii pomiarów ze zwiększającym się natężeniem dźwięku pozwala na "śledzenie" funkcji J_0 i określenie w ten sposób amplitudy drgań w każdym punkcie obrazu niezależnie.

Odtworzenie amplitudy wibracji

Amplituda wibracji jest wyznaczana przez numeryczne dopasowanie funkcji J_0 do zmierzonego natężenia światła w każdym punkcie obrazu.

$$I(x, y) = J_0\left(\frac{4\pi}{\lambda}a\right)$$

Automatyczna analiza wyników

Stabilność układu pomiarowego – kolekcja Faras

Nawet bardzo niewielkie drgania układu pomiarowego względem badanej powierzchni prowadzą do niekontrolowanych, skokowych zmian fazy i zaburzają procedurę pomiarową.

Układ szerograficzny - digital speckle shearing pattern interferometry (DSSPI)

Rejestracja w układzie interferometru Michelsona: przesunięcie obrazu uzyskiwane przy pomocy obrotu lustra.

 $\mathbf{+}$

Dwa obrazy plamkowe interferują w każdym punkcie matrycy.

DSSPI

- wysoka czułość
- możliwość pomiaru w niestabilnych warunkach (poza laboratorium)
- możliwość zastosowania automatycznej metody analizy wyników pomiaru (dla δx większego od rozmiaru analizowanego defektu)

ALE

Trudności w interpretacji gdy analizowana jest duża liczba defektów, lub gdy defekty są bardzo duże.

DSPI oraz DSSPI w jednym urządzeniu pomiarowym

Analiza defektów powierzchni fresku

Inerferometr plamkowy

Może skutecznie wspierać proces zarządzania warunkami przechowywania obiektów dostarczając opiekunom zbiorów informacji na temat stanu zachowania obiektów.

Prosty w użyciu.

W pełni automatyczna analiza danych pomiarowych, szybka i odporna na propagację błędów.

Sprawdzony na rzeczywistych obiektach muzealnych również w warunkach in situ.

Emisja akustyczna w pomiarze rozwoju mikrouszkodzeń

Pomiar fali akustycznej powstającej podczas mikro-pękania struktury obiektu

Metoda jest: - pasywna - nieniszcząca

- bardzo czuła

sygnał EA: 10 μm² W objętości *30x15x15 cm*

Pomiar narastania uszkodzeń

- Metoda umożliwia ciągły pomiar mikro-pękania materiałów, wywołanego zmianami temperatury i wilgotności otoczenia.
- Pozwala lokalizować powstające uszkodzenia w przestrzeni i w czasie.

Emisja akustyczna w monitorowaniu obiektów zabytkowych

- Bezpieczeństwo
- Długoczasowa stabilność
- Redukcja środowiskowego szumu
- Ilościowa interpretacja wyników

Kalibracja układu pomiarowego

Zmierzona energia Emisji Akustycznej jest przeliczana na długość pęknięcia próbki.

Komoda, XVIII w., konstrukcja dębowa, pokryta laką japońską

Instalacja czujników

Dwa czujniki EA przyklejono (odwracalnie) do szuflady i ściany bocznej komody w pobliżu widocznych uszkodzeń drewna i laki.

Wstępne wyniki monitorowania

Analiza korelacji sygnału EA i wilgotności względnej w galerii

Całkowity rozmiar uszkodzenia nie przekracza 1 mm²

Emisja akustyczna w monitorowaniu obiektów zabytkowych

- bardzo czuła, stabilna, odporna na szum środowiskowy,
- pozwala ustalić korelacje miedzy narastaniem uszkodzenia i wywołującym je bodźcami
- komplementarna względem metod optycznych

Obiekty tekstylne

Interferometria plamkowa

niestabilne geometrycznie
 Emisja Akustyczna

Iuźna struktura i wysoki współczynnik tłumienia dźwięku

Źródłem zagrożeń jest odkształcenie

Potrzebujemy odpowiedniego tensometru

Światłowodowe siatki Bragga (FBG)

W wyniku interferencji ultrafioletowych wiązek laserowych następuje zmiana periodyczna współczynnika załamania światła rdzenia.

Laser UV 244nm

Światłowodowe siatki Bragga (FBG)

λ

dł. fali

Gdy stała siatki jest równa połowie długości fali przenoszonej przez światłowód następuje spójne odbicie.

Światłowodowe siatki Bragga (FBG)

dł. fali Bragga zmienia się liniowo w funkcji odkształcenia i temperatury

Czujniki FBG do monitorowania zabytkowych obiektów tekstylnych

- Dobór odpowiedniego światłowodu (rdzeń i pokrycie).
- Kompensacja wpływu temperatury i wilgotności względnej na deformację światłowodu w czasie pomiaru (dodatkowy czujnik).
- Połączenie czujnika z badaną tkaniną.

- Nie jest konieczna stabilizacja źródła światła.
- Pomiar jest bardzo szybki.

Światłowód

Właściwości mechaniczne czujników światłowodowych z pokryciem akrylowym (aFBG) oraz ceramicznym (cFBG).

stopień przeniesienia odkształcenia z płaszcza do rdzenia odpowiedź czujnika na cykliczną zmianę odkształcenia

Monitorowanie deformacji tkanin

Połączenie światłowodu z tkaniną : klejenie, wszywanie, wplatanie ...

Uchwyty magnetyczne:

- nieniszczące
- zapewniają dobre przeniesienie odkształceń
- wielokrotnego użycia łatwe do zamontowania i zdemontowania

Roczny monitoring gobelinu w Muzeum Narodowym w Krakowie

Zakres odkształceń występujących podczas ekspozycji

Nieliniowa zależność pomiędzy zmianą wilgotności względnej otoczenia a odkształceniem tkaniny

Co dalej?

Charakteryzowanie stanu obiektów na poziomie mikro

- Potwierdzanie autentyczności
- Określanie atrybucji
 - Analiza materiałów i technik malarskich

