

Dynamika w magnetycznych złączach tunelowych

Witold Skowroński

Katedra Elektroniki Wydział Informatyki Elektroniki i Telekomunikacji

Motywacja

- Badania magnetycznych złącz tunelowych pod kontem zastosowań
 - Magnetyczne komórki pamięci
 - Sensory pola magnetycznego
 - Komponenty elektroniki mikrofalowej
 - Generatory
 - Detektory mikrofalowe
- Nowe efekty fizyczne do zastosowań w Elektronice Spinowej

Plan

- Magnetyczne złącze tunelowe
 - Tunelowa magnetorezystancja
 - Efekt transferu spinowego momentu siły (spintransfer-torque - STT)
- Technologia wytwarzania magnetycznych złącz tunelowych
- Wyniki badań
 - Precesja magnetyzacji cienkich warstw
 - Generator/detektor sygnałów mikrofalowych
 - Wpływ pola elektrycznego
- Podsumowanie

Plan

AGH

- Magnetyczne złącze tunelowe
 - Tunelowa magnetorezystancja
 - Efekt spinowego momentu siły (spin-transfertorque - STT)
- Technologia wytwarzania magnetycznych złącz tunelowych
- Wyniki badań
 - Precesja magnetyzacji cienkich warstw
 - Generator/detektor sygnałów mikrofalowych
 - Wpływ pola elektrycznego
- Podsumowanie

Katedra Elektroniki, AGH w Krakowie Magnetyczne złącze tunelowe AGH Ó Θ e E₄ E 🛦 Ð $I_{AP} = I_{\uparrow\downarrow} + I_{\downarrow\uparrow}$ $I_P = I_{\uparrow\uparrow} + I_{\downarrow\downarrow}$ Ð

$$TMR = \frac{R_{AP} - R_{P}}{R_{P}} = \frac{I_{P} - I_{AP}}{I_{AP}} = \frac{2p_{1}p_{2}}{1 - p_{1}p_{2}}$$

Transfer spinowego momentu siły

Slonczewski JMMM 158, L1 (1996)

Berger PRB 54, 9353 (1996)

Katedra Elektroniki, AGH w Krakowie

Dynamika złącza tunelowego

 $\frac{dm}{dt} = -\gamma m \times H_{eff} + \frac{\alpha m}{\alpha m} \times \frac{dm}{dt}$

Witold Skowroński, Kraków 17.01.2014

AGH

Konsekwencje efektu STT

- Generacja/detekcja mikrofal
- Przełączenie magnetyzacji spinowo spolaryzowanym prądem

Ralph, Stiles JMMM 320, 1190 (2008)

Witold Skowroński, Kraków 17.01.2014

11/43

Plan

- Magnetyczne złącze tunelowe
 - Tunelowa magnetorezystancja
 - Efekt spinowego momentu siły (spin-transfertorque - STT)
- Technologia wytwarzania magnetycznych złącz tunelowych
- Wyniki badań
 - Precesja magnetyzacji cienkich warstw
 - Generator/detektor sygnałów mikrofalowych
 - Wpływ pola elektrycznego
- Podsumowanie

AGH

Struktura warstwowa

- Warstwa swobodna oraz warstwa referencyjna ze stopu CoFeB (J. Wrona Singulus)
- Multiwarstwy Fe/MgO/Fe (prof. Korecki)

Nano-litografia

- Rozmiary rzędu nm potrzebne ze względu na:
 - Niski opór cienkiej bariery MgO
 - Jednorodne zachowanie namagnesowania
- Nanostrukturyzacja złącz o rozmiarach rzędu nm:
 - Litografia elektronowa
 - Trawienie jonowe
 - Nanoszenie dodatkowych warstw metal/izolator
- Cały proces dostępny w ACMIN

Litografia elektronowa

- System Raith eLINE plus
- Rozmiary elementów do 50 nm

Katedra Elektroniki, AGH w Krakowie

Nano-złącza tunelowe

Trawienie jonowe

- Trawienie jonami Ar+
- Detektor masowy Hiden Analytics

Witold Skowroński, Kraków 17.01.2014

AGH

Stanowisko pomiarowe

 Zautomatyzowane stanowisko (LabVIEW) do pomiarów magneto-transportowych

Witold Skowroński, Kraków 17.01.2014

18/43

- Magnetyczne złącze tunelowe
 - Tunelowa magnetorezystancja
 - Efekt spinowego momentu siły (spin-transfertorque - STT)
- Technologia wytwarzania magnetycznych złącz tunelowych
- Wyniki badań
 - Precesja magnetyzacji cienkich warstw
 - Generator/detektor sygnałów mikrofalowych
 - Wpływ pola elektrycznego
- Podsumowanie

Przełączanie złącza

• Jak wpływa grubość bariery tunelowej na prąd krytyczny? $J_{c0} = \frac{2e\alpha\mu_0 M_S t_{FL} H_{eff}}{\hbar \eta}$

Pomiar dynamiki tłumienia

Mikrofalowy układ precesji spinowej

Efekt diody spinowej

- MTJ zasilane sygnałem mikrofalowym
- Precesja namagnesowania w fazie z sygnałem wejściowym – mieszanie powoduje powstanie sygnału DC

Tulapurkar et al. Nature **438**, 339, 2005

t

Lokalny ST-FMR

- Dzięki efektowy STT lokalnie mierzony jest rezonans ferromagnetyczny
 - Anizotropia magnetyczna
 - tłumienie

Witold Skowroński, Kraków 17.01.2014

Witold Skowroński, Kraków 17.01.2014

26/43

Skowroński et al. PRB 87, 094419 (2013)

Symulacje mikromagnetyczne

free layer magnetization distribution

in-plane torque in free layer distribution

current density distribution

- Symulacje mikromagnetyczne w środowisku OOMMF
- M. Frankowski, M. Czapkiewicz

Przełączanie dynamiczne

M. Frankowski, M. Czapkiewicz, W. Skowroński, T. Stobiecki: Physica B (2013)

Witold Skowroński, Kraków 17.01.2014

AGH

Anizotropia magnetyczna

- Wraz ze zmniejszaniem grubości warstwy ferromagnetyka (CoFeB) anizotropia zmienia się z płaszczyzny do kierunku prostopadłego
- Lepsza stabilność termiczna
- Mniejszy prąd przełączania

Ikeda et al. Nature Mate. 11, 1 (2010)

Witold Skowroński, Kraków 17.01.2014

AGH

Anizotropia warstwy swobodnej

- Krytyczna grubość przejścia dla CoFeB ok. 1.3 nm
- Ferromagnetyczne sprzężenie pomiędzy warstwą swobodną i referencyjną

Generator RF z MTJ

 Dzięki anizotropii prostopadłej oraz sprzężeniu przez barierę MgO zaproponowano generator RF działający bez zew. pola magnetycznego

Witold Skowroński, Kraków 17.01.2014

Wpływ pola elektrycznego

 Pole elektryczne wpływa na anizotropię magnetyczną cienkiej warstwy ferromagnetycznej

33/43

Weisheit et al. Science 315, 349, 2007 Murayama et al. Nat. Mater. 4, 158, 2008 Bauer, Przybylski et al. Nano Lett. 1437, 2012

AGH

Kontrolowanie anizotropii w MTJ

- CoFeB 2.3 (RL)/ MgO 2 / CoFeB 1.35 (FL)
- Zmiana grubości FL powoduje przejście z anizotropii w płaszczyźnie do prostopadłej
- Napięcie zmienia anizotropię warstwy FL

Sterowany czujnik pola

- Czujnik pola o sterowanych parametrach:
 - V+: większy zakres, mniejsza czułość
 - V-: mniejszy zakres, większa czułość

Skowroński, Wiśniowski et al. APL 101, 192401, 2012

AGH

Precesja magnetyzacji wywołana polem E

 Sygnał zmienny zasilający MTJ wywołuje precesję namagnesowania w FL

Nozaki et al. Nature Phys 8, 491, 2012

Pomiary FMR

- CoFeB 2.3 (RL) / MgO 2 / CoFeB 1.6 (FL)
- Moc sygnału $P_{in} = -10 \text{ dBm}$, częstotliwość 0.5 < f < 3 GHz

Witold Skowroński, Kraków 17.01.2014

Wpływ statycznego pola E

- FMR wywołany przez efekt STT
- Zmiana częstotliwości df = 97 MHz/V wywołana
 0.30 0.25

polem E

 Koegzystencja efektów STT i VCMA

STT dla dużych napięć

- Zmierzony FMR pochodzi od prądu (STT)
 - Inny kształt krzywej rezonansowej
 - Inna zależność kątowa
- Komponent STT zmierzony dla

•
$$-1 < V < 1 V$$

Wilczyński et al. PRB 77, 054434, 2008

Witold Skowroński, Kraków 17.01.2014

39/43

Podsumowanie

- Podstawowe efekty wykorzystywane w elektronice spinowej: MR, STT
- Technologia wytwarzania i nanostrukturyzacji magnetycznych złącz tunelowych
- Dynamika w złączach wywołana spinowo spolaryzowanym prądem:
 - Generator
 - Detektor mikrofal
- Wpływ pola elektrycznego na anizotropię

Ludzie

- T. Stobiecki, J. Wrona, M. Czapkiewicz, M. Frankowski, P. Wiśniowski, W. Powroźnik, J. Kanak, A. Żywczak
 - Katedra Elektroniki AGH
- S. van Dijken, L. Yao, Q. Qin
 - Nanomagnetism and spintronics, Uniwersytet Aalto, Finlandia
- G. Reiss, A. Thomas, K. Rott
 - Uniwersytet w Bielefeld, Niemcy
- S. Serrano-Guisan, H. Schumacher
 - PTB Braunschweig, Niemcy

Podziękowania

AGH

- Fundacja na rzecz Nauki Polskiej, grant doktorski MPD Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures
- Ministerstwo Nauki i Szkolnictwa Wyższego, grant Iuventus Plus (2011)
- Narodowe Centrum Nauki, grant Harmonia E-CONTROL-2012/04/M/ST7/00799)
- NANOSPIN Nanoscale spin torque devices for spin electronic PSPB-045/2010

• Foundation for Polish Science

Katedra Elektroniki, AGH w Krakowie

Dziękuję.