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The spintronics is based on the spin-polarized currents that are
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The spintronics is based on the spin-polarized currents that are

e generated by spin filters,
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The spintronics is based on the spin-polarized currents that are

e generated by spin filters,

e modified/controlled by spin transistors.
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These spintronics devices can be fabricated in:
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These spintronics devices can be fabricated in:

@ planar (mesa-type) geometry,
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These spintronics devices can be fabricated in:

@ planar (mesa-type) geometry,

@ vertical (nanowire-type) geometry.
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In my lecture, I will mainly focus on the nanowire-based spintronics
devices.
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In my lecture, I will mainly focus on the nanowire-based spintronics
devices.

I will introduce the physical background of the operation of spin
filters and spin transistors.
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SiCl, + 2H, — Si + 4HCI

\ 1

Whisker

Vapor-liquid-solid (VLS) growth mechanism of Si semiconductor nanowire.




“Forest” of GaAs nanowires.
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SEM image and (inset) schematic of a back-gated InSb nanowire field-effect transistor with Ni
metal contacts.

M. Fang et al., J. Nanomaterials (2014).
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Cross section of the hexagonal InGaAs core-shell nanowire.
K. Tomioka et al., Nature 488 (2012) 189.
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Transistor based on p-type Si Gate-All-Around (GAA) nanowires.
G. Larrieu and X.-L. Han, Nanoscale 5 (2013) 2437.
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Typical size of semiconductor nanowires:
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Typical size of semiconductor nanowires:

length L ~ 1pm
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Typical size of semiconductor nanowires:

length L ~ 1pm
diameter D ~ 10 =+ 100 nm
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Typical size of semiconductor nanowires:

length L ~ 1pm
diameter D ~ 10 =+ 100 nm

— quasi-one dimensional structures
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Outline

I. Physical background of spintronics

damowski ics of nanowire spintronic devices



Outline

I. Physical background of spintronics
II. Spin filter
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II. Spin filter
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Outline

I. Physical background of spintronics
II. Spin filter
III. Spin transistor

IV. Summary
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I. Physical background of spintronics Classical electrodynamics

Relativistic quantum mechanics
Spin interactions in semiconductors
Model of nanowire
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Spin interactions in semiconductors
Model of nanowire

The operation of spintronics devices is based on the interaction
between the electron spin magnetic moment and effective
magnetic field.
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I. Physical background of spintronics Classical electrodynamics
Relativisti 1tum mechanics

Spin interactions in semiconductors
Model of nanowire

The operation of spintronics devices is based on the interaction
between the electron spin magnetic moment and effective
magnetic field.

This interaction is of relativistic origin and can be derived from either
the classical electrodynamics or quantum relativistic theory (Dirac
equation).
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semiconductors.
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In my lecture, I will consider only the spin-polarized electrons in
semiconductors.

These considerations can also be applied to the holes in
semiconductors

damowski ics of nanowire spintronic devices



und of spintronics Clas ctrodynamics
Relativistic quantum mechanics

Spin interactions in semiconductors
Model of nanowire

In my lecture, I will consider only the spin-polarized electrons in
semiconductors.

These considerations can also be applied to the holes in
semiconductors if — in the following formulas — we replace the
electron charge ¢ = —e, band mass m,, etc., by the corresponding
quantities characterizing the hole, i.e., ¢ = +e, my, etc.
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Spin interactions in semiconductors
Model of nanowire

If the electron with charge ¢ = —e (e is the elementary charge) and
rest mass m.o moves with velocity v in external magnetic (B) and
electric (F) fields (measured in the laboratory frame),
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Spin interactions in semiconductors
Model of nanowire

If the electron with charge ¢ = —e (e is the elementary charge) and
rest mass m.o moves with velocity v in external magnetic (B) and
electric (F) fields (measured in the laboratory frame), then — in the
reference frame moving together with the electron — the electron
experiences the magnetic field
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Spin interactions in semiconductors
Model of nanowire

If the electron with charge ¢ = —e (e is the elementary charge) and
rest mass m.o moves with velocity v in external magnetic (B) and
electric (F) fields (measured in the laboratory frame), then — in the
reference frame moving together with the electron — the electron
experiences the magnetic field

B,y =B+ Bso , (D
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I. Physical background of spintronics ical electrodynamics
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Spin interactions in semiconductors
Model of nanowire

If the electron with charge ¢ = —e (e is the elementary charge) and
rest mass m.o moves with velocity v in external magnetic (B) and
electric (F) fields (measured in the laboratory frame), then — in the
reference frame moving together with the electron — the electron
experiences the magnetic field

B,y =B+ Bso , (D

where |
BSOZ—*ZVXF. (2)

c
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I. Physical background of spintronics ical electrodynamics
ivistic quantum mechanics

Spin interactions in semiconductors
Model of nanowire

If the electron with charge ¢ = —e (e is the elementary charge) and
rest mass m.o moves with velocity v in external magnetic (B) and
electric (F) fields (measured in the laboratory frame), then — in the
reference frame moving together with the electron — the electron
experiences the magnetic field

B,y =B+ Bso , (D

where |
BSOZ—*ZVXF. (2)

c

Eq. (2) results from the Lorentz transformation of the electromagnetic
field and is valid with the accuracy of (v/c)?, where ¢ = velocity of
light in vacuum.
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The electron with spin s possesses the spin magnetic moment
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The electron with spin s possesses the spin magnetic moment

p = _%s . 3)
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The electron with spin s possesses the spin magnetic moment

p = _%s . 3)

ug = eh/(2m,o) = Bohr magneton
g = Lande factor
In vacuum g = 2 (with accuracy of 1073).
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Electron interacts with magnetic field B via the dipol-field
interaction.

The energy of this interaction is given by
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Electron interacts with magnetic field B via the dipol-field
interaction.

The energy of this interaction is given by

Espin =Ez + Eso ) (4)
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I. Physical background of spintronics ical electrodynamics
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Spin interactions in semiconductors
Model of nanowire

Electron interacts with magnetic field B via the dipol-field
interaction.

The energy of this interaction is given by
Espin =Ez + Eso ) (4)

where
Ez = —ps-B &)

is the spin Zeeman interaction energy and
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Spin interactions in semiconductors
Model of nanowire

Electron interacts with magnetic field B via the dipol-field
interaction.

The energy of this interaction is given by
Espin =Ez + Eso ) (4)

where
Ez = —ps-B &)

is the spin Zeeman interaction energy and

1
Eso = M (F x v) (6)

is the spin-orbit interaction energy.
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Introducing the linear momentum of electron p = m,ov we obtain
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Introducing the linear momentum of electron p = m,ov we obtain

1
Eso=——>nps (Fxp). (7)
e C




Classical electrodynamics
Relativistic quantum mechanics

Spin interactions in semiconductors
Model of nanowire

Remark
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Remark
If the electric field is central, i.e., F(r) = F.(r)(r/r), then Eq. (7)
transforms into
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Remark
If the electric field is central, i.e., F(r) = F.(r)(r/r), then Eq. (7)
transforms into

ehF,

Eso = ————
2 2
2mZcer

s-1, 3
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Remark
If the electric field is central, i.e., F(r) = F.(r)(r/r), then Eq. (7)

transforms into
ehF,

Eso = ————
2 2
2mZcer

s-1, 3

s = electron spin
I = r x p = orbital angular momentum
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Remark
If the electric field is central, i.e., F(r) = F.(r)(r/r), then Eq. (7)

transforms into
ehF,

Eso = ————
2 2
2mZcer

s-1, 3

s = electron spin
I = r x p = orbital angular momentum

= Ego in form (8) explains the name: spin-orbit interaction.
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Relativistic quantum mechanics

The previous results can also be obtained from the relativistic
quantum mechanics (Dirac equation).
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Relativistic quantum mechanics

The previous results can also be obtained from the relativistic
quantum mechanics (Dirac equation).

The spin Zeeman energy Ez [Eq. (5)] and SO energy Esp [Eq. (7)] are
calculated as expectation values of the corresponding terms in the
Dirac Hamiltonian.
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Spin interactions in semiconductors
Model of nanowire

The conduction-band electron in a semiconductor is described within
the effective mass approximation (EMA).
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The conduction-band electron in a semiconductor is described within
the effective mass approximation (EMA). According to the EMA we
make the following replacements:
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The conduction-band electron in a semiconductor is described within
the effective mass approximation (EMA). According to the EMA we
make the following replacements:

m.y = m, = conduction-band effective mass,
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The conduction-band electron in a semiconductor is described within
the effective mass approximation (EMA). According to the EMA we
make the following replacements:

m.y = m, = conduction-band effective mass,

g = g* = effective Lande factor
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I. Physical ronics Classical electrodynamics
Relativistic quantum mechanics

Spin interactions in semiconductors
Model of nanowire

In vacuum g* = g = 2.
In semiconductors, g* takes on different values: g* > 2, g* < 2, and
even g* < 0.
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In vacuum g* = g = 2.

In semiconductors, g* takes on different values: g* > 2, g* < 2, and
even g* < 0.

E.g., for GaAs: g* = —0.44, while for magnetic semiconductors, e.g.,
CdMnTe, g* can reach >~ 500,
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In vacuum g* = g = 2.

In semiconductors, g* takes on different values: g* > 2, g* < 2, and
even g* < 0.

E.g., for GaAs: g* = —0.44, while for magnetic semiconductors, e.g.,
CdMnTe, g* can reach >~ 500,

— the giant Zeeman splitting in magnetic semiconductors.
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The spin-orbit (SO) coupling in semiconductor can be obtained from
Eq. (7) if we replace
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The spin-orbit (SO) coupling in semiconductor can be obtained from
Eq. (7) if we replace

electron-positron creation energy = electron-hole creation energy
(semiconductor energy gap)
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The spin-orbit (SO) coupling in semiconductor can be obtained from
Eq. (7) if we replace

electron-positron creation energy = electron-hole creation energy
(semiconductor energy gap)

2meoc? ~ 1 MeV = E, ~ 1 eV
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The spin-orbit (SO) coupling in semiconductor can be obtained from
Eq. (7) if we replace

electron-positron creation energy = electron-hole creation energy
(semiconductor energy gap)

2meoc? ~ 1 MeV = E, ~ 1 eV

= SO interaction in semiconductor would be ~ 10° times stronger
than in vacuum ?7?7
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The spin-orbit (SO) coupling in semiconductor can be obtained from
Eq. (7) if we replace

electron-positron creation energy = electron-hole creation energy
(semiconductor energy gap)

2meoc? ~ 1 MeV = E, ~ 1 eV

= SO interaction in semiconductor would be ~ 10° times stronger
than in vacuum ?7?7

However, the experiments show that the SO interaction in
semiconductors is not so strong.
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For the semiconductor in external magnetic field F the spin-orbit
interaction is described by the Rashba Hamiltonian
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For the semiconductor in external magnetic field F the spin-orbit
interaction is described by the Rashba Hamiltonian

~

HSO,R = ead - (F X k) s (9)
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For the semiconductor in external magnetic field F the spin-orbit
interaction is described by the Rashba Hamiltonian

~

HSO,R = ead - (F X k) s (9)

where « is the Rashba coupling constant and k= —iV.
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For the semiconductor in external magnetic field F the spin-orbit
interaction is described by the Rashba Hamiltonian

~

HSO,R = ead - (F X k) s (9)

where « is the Rashba coupling constant and k= —iV.

For InAs: m, = 0.026 m,o and o = 1.17 nm?.
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The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).
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The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).

The electrons in solids also experience the internal electric field
generated by the atomic cores.
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The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).

The electrons in solids also experience the internal electric field
generated by the atomic cores. This field also leads to the SO
interaction (called the Dresselhaus interaction).
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The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).

The electrons in solids also experience the internal electric field
generated by the atomic cores. This field also leads to the SO
interaction (called the Dresselhaus interaction). This interaction
depends on crystal structure, size of the nanostructure, and doping,
but is independent of the external electric field F.
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The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).

The electrons in solids also experience the internal electric field
generated by the atomic cores. This field also leads to the SO
interaction (called the Dresselhaus interaction). This interaction
depends on crystal structure, size of the nanostructure, and doping,
but is independent of the external electric field F.

= For sufficiently high F the Rashba interaction dominates.
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Spin interactions in semiconductors
Model of nanowire

The Rashba interaction results from the motion of the electron in the
external electric field (generated by the external electrodes).

The electrons in solids also experience the internal electric field
generated by the atomic cores. This field also leads to the SO
interaction (called the Dresselhaus interaction). This interaction
depends on crystal structure, size of the nanostructure, and doping,
but is independent of the external electric field F.

= For sufficiently high F the Rashba interaction dominates.

In the following, I will consider the Rashba interaction only.
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We assume that the electron motion is quasi-free in the growth
direction (z) and confined in the transverse (x, y) directions.
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We assume that the electron motion is quasi-free in the growth
direction (z) and confined in the transverse (x, y) directions.

The transverse confinement potential can be taken in the form of deep
potential well.
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We assume that the electron motion is quasi-free in the growth
direction (z) and confined in the transverse (x, y) directions.

The transverse confinement potential can be taken in the form of deep
potential well. For the infinitely deep potential well we get the
transverse energy levels
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We assume that the electron motion is quasi-free in the growth
direction (z) and confined in the transverse (x, y) directions.

The transverse confinement potential can be taken in the form of deep
potential well. For the infinitely deep potential well we get the
transverse energy levels
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We assume that the electron motion is quasi-free in the growth
direction (z) and confined in the transverse (x, y) directions.

The transverse confinement potential can be taken in the form of deep
potential well. For the infinitely deep potential well we get the
transverse energy levels

E,

_Pn? (%) (10)

+ m, \D

where n; =1,2,... and D is the diameter of the nanowire.
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In numerical calculations, the transverse potential well can be taken
finite, but sufficiently deep.
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In numerical calculations, the transverse potential well can be taken
finite, but sufficiently deep.

In the electron transport through the nanowire, the quantum states
with different n | (transverse modes, transverse subbands) form the
different conduction channels.
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I1. Spin filter




II. Spin filter

Summary of the results for spin filter

Results for mesa-type (planar) GaN/GaMnN resonant tunneling
diode
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Summary of the results for spin filter

APPLIED PHYSICS LETTERS 102, 242411 (2013) @5““”""

Spin filter effect at room temperature in GaN/GaMnN ferromagnetic resonant
tunnelling diode

P decik.Cij J. Adamowski, M. Wotoszyn, and B. J. Spisak
University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
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Summary of the results for spin filter
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FIG. 1. Self-consistent potential energy
profile for spin up and spin down elec-
trons calculated for (a) parallel and (b)
antiparalle]l alignments of the magnet-
ization of the emitter and quantum well
layers
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Summary of the results for spin filter
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Summary of the results for spin filter

spin polarization of the current = ARl , (1)
J1 I

Jjo = current density for o =T, |.
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Summary of the results for spin filter
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FIG. 3. Spin polarization of current P as a function of bias V for different
values of splitting energy AE and (a) parallel and (b) antiparalle] alignments
of the magnetization of the emitter and the quantum well layers at T = 4.2 K.




II. Spin filter

Summary of the results for spin filter

Results for the resonant tunneling diode made from GaN/GaMnN
nanowire
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Summary of the results for spin filter

Schematic of the resonant tunneling diode (RTD) based on the ferromagnetic semiconductor
nanowire. Emitter (left contact) and quantum well are fabricated from ferromagnetic GaMnN,
collector (right contact) — GaN, barriers — AlGaN, AE = spin splitting of the conduction band in
GaMnN, AE ~ Ez.
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Summary of the results for spin filter

0.4

03

02 |-

current density [10° a.u]

01 |-

0.0

T T T

(a) parallel, T=4.2 K

T T T T T

(b) antiparallel, T=4.2 K

-AE=2 meV, spin up
- AE=2 meV, spin down

| - - - AE=10 meV, spin up

- -~ AE=10 meV, spin down

—— AE=15 meV, spin up
——AE=15 meV, spin down

AE=5 meV, spin up
AE=5 meV, spin down

0.06

0.20

Current-voltage characteristics of the nanowire RTD with ferromagnetic contacts at 4.2K. The

magnetization of the source and QW regions is (a) parallel (b) antiparallel.
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Spin polarization of the current at 4.2K. The magnetization of the source and QW regions is (a)

parallel (b) antiparallel.
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0.0 ;’_—‘_’—N\[’_\f: 0.0
-0.2
s T 3
£ 04 L —— AE=2 meV o)
2 —— AE=5 meV 5
k5 + - 2
S AE=10 meV =4
S 06 —— AE=15 meV =
L AE=20 meV
—— AE=30 meV
08 - AE=40 meV |
-1.0 1 L 1 L 1 L 1 1 L 1 L 1 L 1 1.0
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

v,V V.V

Spin polarization of the current at 300K. The magnetization of the source and QW regions is (a)

parallel (b) antiparallel.

Adamowski



II. Spin filter

mary of the results for spin filter

parallel antiparallel

Emitter
I I Collector Emlner i«_" Collector
“ 1—
Emitter Collector Emitter Collector
. o 1L

Emitter Collector Emitter
Collector
E. 1t L
Emitter Emitter
Collector
£ Collector £ (

Electron spin transitions in the nanowire with the parallel and antiparallel magnetization of the

source and QW regions. The source-drain voltage increases from the top to bottom panel.
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Summary of the results for spin filter

@ Antiparallel magnetization configuration is preferred for efficient
spin polarization.

@ Spin current polarization can reach |P| = 1 at zero temperature
and |P| = 0.75 at room temperature.

o The spin filter is an analog of the polarizer (analyzer) of photons.

Janusz Adamowski Physics of nanowire spintronic devices
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IILL.A. Idea of spin transistor

Analogy between the operation of electro-optic modulator and
spin transistor.

damowski ics of nanowire spintronic devices



III.A. Idea of spin transistor
III.B. Ideal operation mode

transistor II1.C. Realistic operation mode
III.D. Comparison with experiment

Electronic analog of the electro-optic modulator

Supriyo Datta and Biswajit Das
School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907

(Received 3 October 1989; accepted for publication 5 December [989)

We propose an electron wave analog of the electro-optic light modulator. The current
modulation in the proposed structure arises from spin precession due to the spin-orbit coupling
in narrow-gap semiconductors, while magnetized contacts are used to preferentially inject and
detect specific spin orientations. This structure may exhibit significant current modulation
despite multiple modes, elevated temperatures, or a large applied bias.
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FIG. 1. (a) Electro-optic modulstor; (b) proposed electron wave analog of
the electro-optic modulator,
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Spin transistor operation driven by the Rashba spin-orbit coupling in the
gated nanowire

P. Wojcik, J. Adamowski,® B. J. Spisak, and M. Wotoszyn
Facudty of Physics and Applied Computer Science, AGH University of Science and Technology,
al. Mickiewicza 30, Krakéw, Poland
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L
Tt
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Schematic of the spin transistor based on the nanowire with the side gate.
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III. Spin transistor III.C. Realistic operation mode
III.D. Comparison with experiment

We assume:
o full spin polarization of electrons in source and drain contacts
@ zero temperature
@ ballistic transport (no scattering)

@ conduction via one transverse subband

damowski ics of nanowire spintronic devices
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(a) No-spin-flip and (b) spin-flip transmission as a function of gate voltage V, and energy E of

the injected electron.
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Current-voltage characteristics of the gated nanowire at OK.
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Aso = characteristic length for the spin-orbit coupling, L, = gate length, V, = gate voltage.
After passing length \gp, the rotating electron spin turns back to its initial state.

(a) Integer (b) half-integer number of s; spin rotations.
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We have found that ratio Ly /Ao is the linear function of gate

voltage.
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We have found that ratio Ly /Ao is the linear function of gate

voltage.

L
= =av,, (12)
Aso

where a = 0.65 V1.
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Spin polarization of electrons in the contacts
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P=—= (13)
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Spin polarization of electrons in the contacts

_m-mn

13
ny +n| (13)

n, = electron density for spin o =T, |
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We assume:
@ partial spin polarization of electrons in contacts (P < 1)
@ room temperature

@ conduction via many transverse subbands
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Current-voltage characteristics for the partial spin polarization (P = 0.4) at 300 K.
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An InAs Nanowire Spin Transistor with Subthreshold Slope of

20mV/dec

Kanji Yohu), Z. Cuiy, K. Konishiy, M.Ohno2), K.Blekkers), W.Prosts), F.-J. Tegudes), J.-C.
Harmanda)
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Current-voltage characteristics of nanowire spin transistor for P = 0.4 and temperature

T = 300K. Symbols correspond to experimental data of Yoh et al., curves — calculation results.
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Current / as a function of gate voltage V, for T = 300K. Upper panel: calculation results for

the full (P = 1, red solid curve) and partial (P = 0.4, blue broken curve) spin polarization.

Lower panel: experimental data of Yoh et al.
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Period of current oscillations as a function of gate voltage:

AVEP' = AVE = 60mV .
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IV. Summary

In the gated nanowire, the gate voltage modulates the spin-orbit
interaction, which changes the electron spins without the
external magnetic field.

—> All-electric operation.
— Current oscillations as a function of gate voltage.

= The current can be switched on/off by tuning the gate
voltage (separately for each spin polarization).

The efficient operation of the spin transistor strongly depends on
the spin polarization of electrons in the source and drain contacts.

— Gate-controlled InAs nanowire can operate as the spin
transistor.

Janusz Adamowski Physics of nanowire spintronic devices
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Main goal of spintronics:

Perfect operation of the spin transistor for each spin polarization.
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Perfect operation of the conventional field-effect transistor.

1. Ferain et al., Nature 479 (2011) 310.
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