Stany stacjonarne w dwuwymiarowych układach zaburzanych szumami Lévy'ego

Bartłomiej Dybiec i Krzysztof Szczepaniec

Zakład Fizyki Statystycznej, Instytut Fizyki, Uniwersytetu Jagiellońskiego

Wydział Fizyki i Informatyki Stosowanej AGH Kraków 13 maja 2016

NATIONAL SCIENCE CENTRE

Motivation: Boltzmann-Gibbs distribution

In the equilibrium

$$P(\text{state}) \propto \exp\left[-rac{E}{k_B T}
ight],$$

T – system temperature, E – energy of the state.

For an overdamped particle the Langevin equation is

$$\frac{dx}{dt} = -V'(x) + \sqrt{2k_BT}\xi(t).$$

Particle's energy is

$$E = V(x)$$

and the stationary distribution

$$P(x) \propto \exp\left[-rac{V(x)}{k_B T}
ight]$$

is fully determined by the potential V(x).

Motivation & Outlook

Motivation

• Examination of stationary states for more general noises.

Road map of presentation

- basic definitions:
 - 1D α -stable noises,
 - 2D α -stable noises.
- stationary states for 1D and 2D systems.

Try to understand

- role of increasing spatial dimensionality,
- universalities of noise driven systems.

Take home message

2D $\alpha\text{-stable}$ noises differs from their 1D analogs but systems driven by 2D α stable noises display universal properties.

Noise in 1D

A random variable is X is stable if

$$AX^{(1)} + BX^{(2)} \stackrel{\mathrm{d}}{=} CX + D,$$

where $X^{(1)}$ and $X^{(2)}$ are independent copies of X, $\stackrel{d}{=}$ denotes equality in distributions. The random variable X is called strictly stable if D = 0. The random variable X is symmetric stable if it is stable and

$$\operatorname{Prob}\{X\} = \operatorname{Prob}\{-X\}.$$

The random variable is α -stable if $C = (A^{\alpha} + B^{\alpha})^{1/\alpha}$ where $0 < \alpha \leq 2$.

The characteristic function of α -stable densities is

$$\phi(k) = \mathbb{E}\left[e^{ikX}\right] = \begin{cases} \exp\left[-\sigma^{\alpha}|k|^{\alpha}\left(1-i\beta\operatorname{sign} k\tan\frac{\pi\alpha}{2}\right)+i\mu k\right] \\ \text{if } \alpha \neq 1, \\ \exp\left[-\sigma|k|\left(1+i\beta\frac{2}{\pi}\operatorname{sign} k\ln|k|\right)+i\mu k\right] \\ \text{if } \alpha = 1, \end{cases}$$

where $\alpha \in (0, 2]$, $\beta \in [-1, 1]$, $\sigma > 0$ and $\mu \in \mathbb{R}$.

Characteristic function

$$\phi(k) = \begin{cases} \exp\left[-\sigma^{\alpha}|k|^{\alpha}\left(1-i\beta \text{sign}k\tan\frac{\pi\alpha}{2}\right)+i\mu k\right], & \text{for } \alpha \neq 1, \\ \exp\left[-\sigma|k|\left(1+i\beta\frac{2}{\pi}\text{sign}k\ln|k|\right)+i\mu k\right], & \text{for } \alpha = 1, \end{cases}$$

• asymptotic behavior $P(x) \propto |x|^{-(\alpha+1)}$ ($\alpha < 2$),

• Normal distribution ($\alpha = 2, \beta = 0$)

$$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

• Cauchy distribution (
$$\alpha = 1, \beta = 0$$
)

$$\frac{\sigma}{\pi} \frac{1}{(x-\mu)^2 + \sigma^2},$$

• Lévy-Smirnoff distribution (fully asymmetric, $\alpha = \frac{1}{2}, \beta = 1$)

$$\left(\frac{\sigma}{2\pi}\right)^{\frac{1}{2}} (x-\mu)^{-\frac{3}{2}} \exp\left[-\frac{\sigma}{2(x-\mu)}\right]$$

 $\overline{\mathbf{x}}$

Noise 2D

Analogously like in 1D: Random vector $\mathbf{X} = (X_1, \dots, X_d)$ is said to be a stable random vector in \mathbb{R}^d if for any positive numbers A and B, there is a positive number C and a vector \mathbf{D} such that

$$A\mathbf{X}^{(1)} + B\mathbf{X}^{(2)} \stackrel{\mathrm{d}}{=} C\mathbf{X} + \mathbf{D},$$

where $X^{(1)}$ and $X^{(2)}$ are independent copies of X, $\stackrel{d}{=}$ denotes equality in distributions. The vector X is called strictly stable if D = 0. The vector X is symmetric stable if it is stable and

$$\operatorname{Prob}\{\mathbf{X}\in A\}=\operatorname{Prob}\{-\mathbf{X}\in A\}$$

for any Borel set A of \mathbb{R}^d . A random vector is α -stable if $C = (A^{\alpha} + B^{\alpha})^{1/\alpha}$ where $0 < \alpha \leq 2$.

The characteristic function $\phi(\mathbf{k}) = \mathbb{E}\left[e^{i\langle \mathbf{k}, \mathbf{X} \rangle}\right]$ of the α -stable vector $\mathbf{X} = (X_1, \dots, X_d)$ in \mathbb{R}^d is

$$\phi(\mathbf{k}) = \begin{cases} \exp\left\{-\int_{\mathcal{S}_d} |\langle \mathbf{k}, \mathbf{s} \rangle|^{\alpha} \left[1 - i \operatorname{sign}(\langle \mathbf{k}, \mathbf{s} \rangle) \tan \frac{\pi \alpha}{2}\right] \Lambda(d\mathbf{s}) + i \langle \mathbf{k}, \boldsymbol{\mu}^0 \rangle \right\} \\ \text{for } \alpha \neq 1, \\ \exp\left\{-\int_{\mathcal{S}_d} |\langle \mathbf{k}, \mathbf{s} \rangle|^{\alpha} \left[1 + i \frac{2}{\pi} \operatorname{sign}(\langle \mathbf{k}, \mathbf{s} \rangle) \ln(\langle \mathbf{k}, \mathbf{s} \rangle)\right] \Lambda(d\mathbf{s}) + i \langle \mathbf{k}, \boldsymbol{\mu}^0 \rangle \right\} \\ \text{for } \alpha = 1, \end{cases}$$

where S_d is a unit sphere in \mathbb{R}^d and $\Lambda(\cdot)$ is a spectral measure.

G. Samorodnitsky, and M. S. Taqqu, Stable NonGaussian Random Processes, (Chapman & Hall 1994).

Cauchy distribution $\alpha = 1$

For symmetric spectral measure concentrated on intersections of the axes with the unit sphere S_2 the bi-variate Cauchy ($\alpha = 1$) distribution is

$$p(x,y) = rac{1}{\pi} rac{\sigma}{(x^2 + \sigma^2)} imes rac{1}{\pi} rac{\sigma}{(y^2 + \sigma^2)}.$$

For continuous and uniform spectral measure

$$p(x,y) = \frac{1}{2\pi} \frac{\sigma}{(x^2 + y^2 + \sigma^2)^{3/2}}.$$

Equations in 1D

The Langevin equation

$$rac{dx}{dt} = -V'(x) + \sigma \zeta_{lpha,0}(t),$$

 $dx = -V'(x)dt + \sigma dL_{lpha,0}(t)$

is associated with the fractional Smoluchowski-Fokker-Planck equation

$$\begin{aligned} \frac{\partial p(x,t)}{\partial t} &= \frac{\partial}{\partial x} \left[V'(x) p(x,t) \right] + \sigma^{\alpha} \frac{\partial^{\alpha} p(x,t)}{\partial |x|^{\alpha}} \\ &= \frac{\partial}{\partial x} \left[V'(x) p(x,t) \right] - \sigma^{\alpha} (-\Delta)^{\alpha/2} p(x,t). \end{aligned}$$

The fractional Riesz-Weil derivative is defined via its Fourier transform

$$\mathcal{F}\left[rac{\partial^lpha p(x,t)}{\partial |x|^lpha}
ight] = \mathcal{F}\left[-(-\Delta)^{lpha/2} p(x,t)
ight] = -|k|^lpha \mathcal{F}\left[p(x,t)
ight].$$

P. D. Ditlevsen, Phys. Rev. E 60 172 (1999).
 D. Schertzer and M. Larchevêque, J. Duan, V. V. Yanowsky, S. Lovejoy, J. Math. Phys. 42 200 (2001).

Equations in 1D

For $\alpha < 2$, and $V(x) = |x|^c$ stationary states exist for $c > 2 - \alpha$. Stationary states (if exist) have power-law asymptotics

$$p_{st}(x) \propto |x|^{-(c+\alpha-1)}$$

For c = 2 the stationary density is the same as the stable distribution associated with the underlying noise.

For
$$V(x) = \frac{1}{4}x^4$$
 and $\alpha = 1$

$$p_{st}(x) = \frac{\sigma}{\pi(\sigma^{4/3} - \sigma^{2/3}x^2 + x^4)}.$$

A. V. Chechkin, J. Klafter, V. Yu. Gonchar, R. Metzler and L. V. Tanatarov, Chem. Phys. 284 233 (2002);
Phys. Rev. E 67, 010102 (2003).
B. Dybiec, I. M. Sokolov, A. V. Chechkin, J. Stat. Mech. P07008 (2010).

Stationary states (quartic – $V(x) = x^4/4$ – potential)

Cauchy

Gauss ...

0.45

0.4

0.35 0.3 0.25

0.2

0.15

0.1

0.05 0

-3

-2

-1

0

х

 $P_{st}(x)$

For $\alpha = 2$, the stationary states are of the Boltzmann-Gibbs type, i.e. $P(x) \propto \exp[-V(x)].$

For $\alpha < 2$, stationary solutions are no longer of the Boltzmann-Gibbs type. For $\alpha = 1$

$$P_1(x) = rac{1}{\pi(x^4 - x^2 + 1)}.$$

A. V. Chechkin, J. Klafter, V. Yu. Gonchar, R. Metzler and L. V. Tanatarov, Chem. Phys. 284 233 (2002); Phys. Rev. E 67, 010102 (2003).

2

3

2D Langevin equation

$$egin{aligned} &rac{d\mathbf{r}}{dt} = -
abla V(\mathbf{r}) + \sigma eta_lpha(t), \ & extsf{dr} = -
abla V(\mathbf{r}) dt + \sigma d \mathbf{L}_lpha(t). \end{aligned}$$

Especially interesting potentials are

- harmonic: $V(x, y) = \frac{1}{2}r^2 = \frac{1}{2}(x^2 + y^2)$,
- quartic: $V(x,y) = \frac{1}{4}r^4 = \frac{1}{4}(x^2 + y^2)^2$.

Bivariate Gaussian

Equations in 2D

The associated Smoluchowski-Fokker-Planck equation

$$\frac{\partial p(\mathbf{r},t)}{\partial t} = \nabla \cdot [\nabla V(\mathbf{r})p(\mathbf{r},t)] + \sigma^{\alpha} \Xi p(\mathbf{r},t),$$

where Ξ is the fractional operator. $\nabla \cdot [\nabla V(\mathbf{r})p(\mathbf{r},t)]$ originates due to the deterministic force $\mathbf{F}(\mathbf{r}) = -\nabla V(\mathbf{r})$ acting on a test particle.

For the bi-variate α -stable noise with the uniform spectral measure the fractional operator

$$\mathbf{\Xi} = -(-\Delta)^{lpha/2}.$$

For the bi-variate α -stable noise with the discrete symmetric spectral measure (located on intersections of S_2 with axis)

$$\boldsymbol{\Xi} = \frac{\partial^{\alpha}}{\partial |\mathbf{x}|^{\alpha}} + \frac{\partial^{\alpha}}{\partial |\mathbf{y}|^{\alpha}}.$$

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, 1993).
A. V. Chechkin, V. Y. Gonchar, and M. Szydlowski, Phys. Plasmas 9, 78 (2002).

Bivariate Cauchy – parabolic potential

 $\overline{\mathbf{x}}$

Bivariate Cauchy – parabolic potential – continuous $\Lambda(\cdot)$

Smoluchowski-Fokker-Planck equation

$$\frac{\partial p}{\partial t} = \frac{\partial}{\partial x} (xp) + \frac{\partial}{\partial y} (yp) - (-\Delta)^{\alpha/2} p.$$

In the Fourier space

$$\frac{\partial \hat{p}}{\partial t} = -k \frac{\partial \hat{p}}{\partial k} - l \frac{\partial \hat{p}}{\partial l} - (k^2 + l^2)^{\alpha/2} \hat{p}.$$

The stationary density fulfills

$$k\frac{\partial\hat{p}}{\partial k} + l\frac{\partial\hat{p}}{\partial l} = -(k^2 + l^2)^{\alpha/2}\hat{p},$$
$$(k^2 + l^2)^{\alpha/2}\hat{p} + (k^2 + l^2)^{1/2}\hat{p}' = 0,$$
where $\hat{p}' = \frac{\partial\hat{p}(\sqrt{k^2 + l^2})}{\partial\sqrt{k^2 + l^2}}$. The solution is
$$\hat{p} = \exp\left[-\frac{(k^2 + l^2)^{\alpha/2}}{\alpha}\right].$$

Bivariate Cauchy – parabolic potential – discrete $\Lambda(\cdot)$

Smoluchowski-Fokker-Planck equation

$$\frac{\partial p}{\partial t} = \frac{\partial}{\partial x} (xp) + \frac{\partial}{\partial y} (yp) + \left(\frac{\partial^{\alpha}}{\partial |x|^{\alpha}} + \frac{\partial^{\alpha}}{\partial |y|^{\alpha}} \right) p.$$

In the Fourier space

$$\hat{p}(l)\left[krac{\partial\hat{p}(k)}{\partial k}+|k|^{lpha}\hat{p}(k)
ight]+\hat{p}(k)\left[lrac{\partial\hat{p}(l)}{\partial l}+|l|^{lpha}\hat{p}(l)
ight]=0.$$
 (1)

$\alpha = 0.5 - quartic potential$

K. Szczepaniec and B. Dybiec, Phys. Rev. E 90, 032128 (2014).

Bivariate Cauchy – quartic potential

K. Szczepaniec and B. Dybiec, Phys. Rev. E 90, 032128 (2014).

$\alpha = 1.9 - quartic potential$

 $\overline{\mathbf{x}}$

Marginal densities

Survival probabilities, $S(x) = 1 - F_m(x)$, for marginal densities of x for uniform (left panel) and symmetric discrete (right panel) spectral measures. α : $\alpha = 0.5$ (top row), $\alpha = 1$ (middle row) and $\alpha = 1.5$ (bottom row). Potentials of $V(x, y) = (x^2 + y^2)^{c/2}$ type: harmonic (c = 2), cubic (c = 3) and quartic (c = 4). Solid lines present $x^{-(c+\alpha-2)}$ power-law asymptotics of survival probailities.

K. Szczepaniec and B. Dybiec, Phys. Rev. E 90, 032128 (2014).

1D noise and 2D phase space

1D noise and 2D phase space

Damped (Brownian) harmonic oscillator

Damped harmonic oscillator

$$\ddot{x}(t) = -\gamma \dot{x}(t) - V'(x) + \xi(t).$$

Klein-Kramers equation

$$\frac{\partial P}{\partial t} = -v \frac{\partial P}{\partial x} + \frac{\partial}{\partial v} \left\{ \left[V'(x) + \gamma v \right] P \right\} + D_2 \frac{\partial^2 P}{\partial v^2},$$

where

$$P = P(x, v; t | x_0, v_0; t_0).$$

Stationary solution

$$p(x, v) \propto \exp\left[-\frac{V(x)}{k_B T} - \frac{mv^2}{2k_B T}\right]$$

 \rightarrow x and v are independend random variables \rightarrow for $V(x) \propto x^2$ equipartition theorem

Damped (Lévy) harmonic oscillator

Equation of motion

$$\ddot{x}(t) = -\gamma \dot{x}(t) - V'(x) + \zeta(t),$$

can be rewritten as

$$\begin{cases} \frac{dx}{dt} = v \\ \frac{dv}{dt} = -\gamma v - V'(x) + \zeta(t) \end{cases}$$

Fractional Kleina-Kramers equation

$$rac{\partial P}{\partial t} = -v rac{\partial P}{\partial x} + rac{\partial}{\partial v} \left\{ \left[V'(x) + \gamma v
ight] P
ight\} + D_{lpha} rac{\partial^{lpha} P}{\partial |v|^{lpha}},$$

where

$$P = P(x, v; t | x_0, v_0; t_0).$$

Damped (Lévy) harmonic oscillator

Due to linear force $(F(x) \stackrel{*}{=} -V'(x) = -kx)$ 2D random variable (x, v) is a 2D α -stable variable:

- for $0 < \alpha < 2 x$ and v are not independent,
- there is no equipartition theorem.
- I. M. Sokolov, B. Dybiec and W. Ebelling, Phys. Rev. E 83, 041118 (2011).

Summary

Conclusions

2D systems driven by bi-variate α -stable noises display analogous universities like 1D systems.

Thank you very much for your attention !!

- I. M. Sokolov, B. Dybiec and W. Ebelling, Phys. Rev. E 83, 041118 (2011); also arXiv:1010.2657
- K. Szczepaniec and B. Dybiec, Stationary states in 2D systems driven by bi-variate Lévy noises, Phys. Rev. E 90, 032128 (2014); also arXiv:1406.7103.
- K. Szczepaniec and B. Dybiec, Resonant activation in 2D and 3D systems driven by multi-variate Lévy noises, J. Stat. Mech. P09022 (2014); also arXiv:1406.7810.
- K. Szczepaniec and B. Dybiec, Escape from bounded domains driven by multivariate -stable noises, J. Stat. Mech. P06031 (2015); also arXiv:1406.7810.
- B. Dybiec and K. Szczepaniec, Escape from hypercube driven by multi-variate -stable noises: role of independence, Eur. Phys. J. B 88, 184 (2015).

Typeset in LATEX using beamer.sty.

grant 2014/13/B/ST2/020140.

