Transition to Cooperative Behaviour in a Route Choice Game

Martin Schönhof^{1,2}, Dirk Helbing¹, Hans-Ulrich Stark¹, and Janusz Hołyst²

- Institute for Transport & Economics, Dresden University of Technology
 Security of Physics, Wereaux University of Technology
 - 2) Faculty of Physics, Warsaw University of Technology

Overview

- Traffic networks, route choice, and game theory
- Route choice experiment (theory and setup)
- Results and cooperative behaviour
- Simulation

Traffic Distribution

- Road network as set of different origin destination pairs (o-d pairs)
- Travel time on a route increases with its occupation
- Wardrop equilibirium (special Nash Equilibrium): for all o-d pairs
 - equal costs (travel times) on all used routes and
 - higher costs on all unused routes
- Wardrop equilibrium mostly not efficient (≠ system optimum), sometimes even suboptimal for all users (Braess' paradox)

Occupation and Inverse Travel Times

Greenshield's linear velocity-density relation for route $i \in \{A, B\}$:

$$V_i(N_i) = V_i^0 \left(1 - \frac{N_i(t)}{N_i^{\text{max}}} \right)$$

 V_i : Average vehicle speed N_i : Number of veh. on route i

 V_i^0 : Maximal velocity N_i^{max} : Capacity of route i

• Inverse travel time $P_i(N_i) = \frac{V_i(N_i)}{S_i} = P_i^0 - P_i^1 N_i$

$$S_i: \text{ Length of route } i, \quad P_i^0 = \frac{V_i^0}{S_i}, \quad \text{and } P_i^1 = \frac{V_i^0}{N_i^{\max}S_i}$$

$$1/T(N_i) = A_i - B_i N_i$$
, inverse travel time

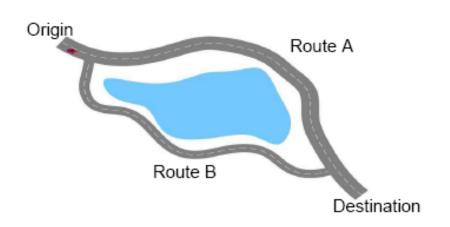
The user equilibrium of equal travel times is found for a fraction

$$\frac{N_1^{\rm e}}{N} = \frac{B_2}{B_1 + B_2} + \frac{1}{N} \frac{A_1 - A_2}{B_1 + B_2} \tag{3}$$

of persons choosing route 1. In contrast, the system optimum corresponds to the maximum of the overall inverse travel times $N_1/T_1(N_1) + N_2/T_2(N_2)$ and is found for the fraction

$$\frac{N_1^{\circ}}{N} = \frac{B_2}{B_1 + B_2} + \frac{1}{2N} \frac{A_1 - A_2}{B_1 + B_2} \tag{4}$$

If B_1=B_2 =B then:


for user optimum: N_1 - N_2=(A_1 - A_2)/B (more users at a faster road)

for system optimum: N_1-N_2=(A_1-A_2)/(2B) (faster road should NOT be overloaded !!!)

Decision Game Derived by a Small Traffic System

- 1 o-d pair
- \bullet 2 routes (A, B)
- 2 users
- ullet payoff points (P_A, P_B)
- ullet users on A,B: N_A,N_B

$P_A(N_A)$	=	600 -	$300N_A$
$P_B(N_B)$	=	0 —	$100N_B$

2 users:

N_A	0	1	2
N_B	2	1	0
P_A	_	300	0
P_B	-200	-100	-
\overline{P}	-200	100	0

Game theory – the Route Choice Game

N_A	0	1	2
N_B	2	1	0
P_A	_	300	0
P_B	-200	-100	-
\overline{P}	-200	100	0

Route A Route B

Route A

Route B

0	-100
0	300
300	-200
-100	-200

- symmetrical 2x2 game
- "A" dominant strategy
- (A,A) is unique Nash-equilibirum which is
 - not system optimal
 - pareto efficient
- (A,A) best choice in one shot game

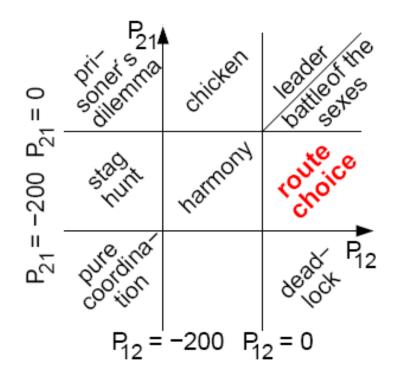
Game Theoretical Classification

prisoner's

coop. def.

dilemma: coop. -300

def.


100 -200

general form of symmetrical 2x2 games:

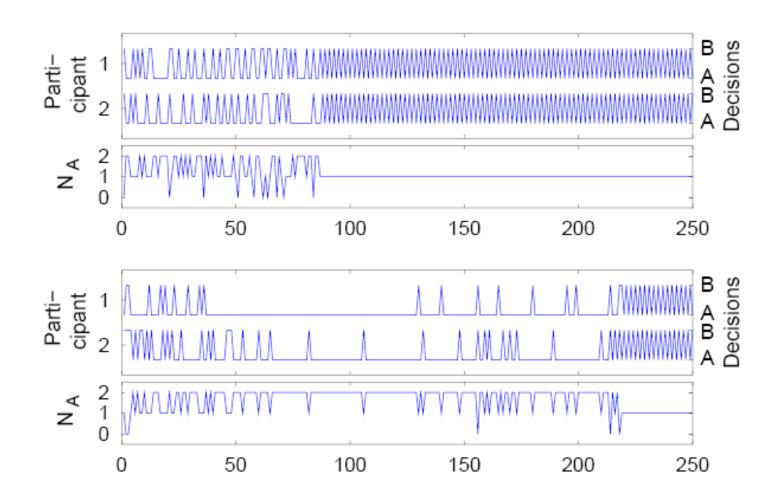
> 2 strategy 1 P_{12} P₂₁ -200 strategy 2

route choice:

Α В route A 300 route B -100|-200

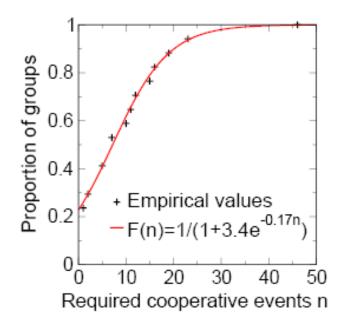
Faculty of Physics and Center of Excellence for Complex Systems Research (CSR), Warsaw University of Technology

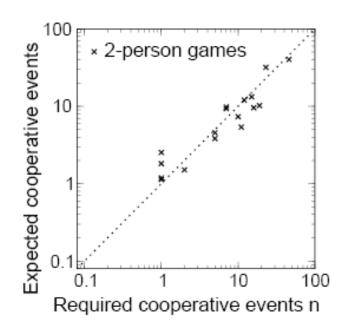
Setup: Screenshot


Player knowledge:

- (A,A) $\Rightarrow P_A = 0$
- (A,B) $\Rightarrow \overline{P} = 100, P_A > P_B$
- ullet time dependent strategy may help to reach $\overline{P}=100$

Emergence of Coherent Oscillatory Behaviour

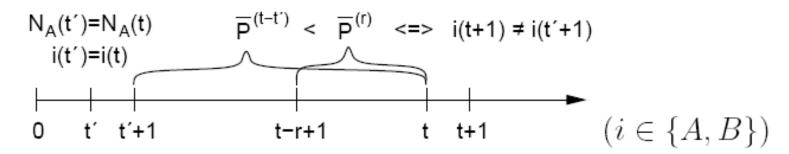

Faculty of Physics and Center of Excellence for Complex Systems Research (CSR), Warsaw University of Technology



Cooperative Events Before Start of Cooperation

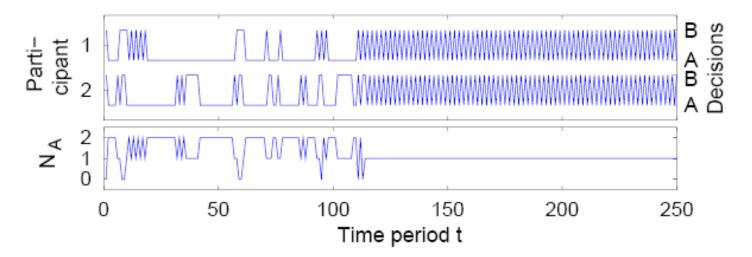
Cooperative event (ce): The participants established the system optimum in step t, and both participants change the route at t+1.

$$n_{\text{expect.}} = \frac{T_{\text{coop}}}{\frac{1}{\text{ce-rate}}} = \frac{T_{\text{coop}}}{2\prod_{i=1}^2 \frac{1}{\text{changing rate of user } i \text{ (until coop.)}}}$$

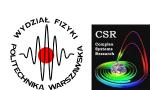


Model of Reinforcement Learning

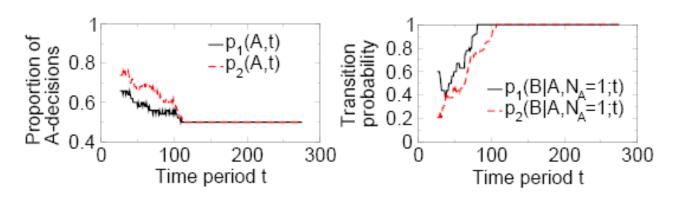
deterministic preferences of decision behaviour:

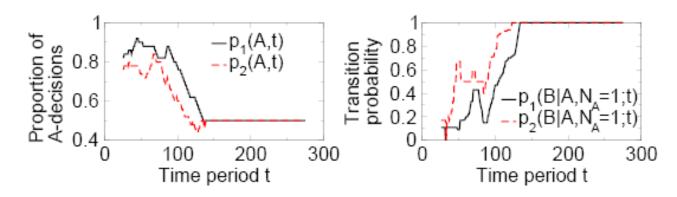

In addition, random change of decision behaviour (mutation):

$$\nu_l(t) = \nu_l^0 + \nu_l^1 [1 - \overline{P}_l^{(r)}(t)/100]$$



Simulated Route Choice Game

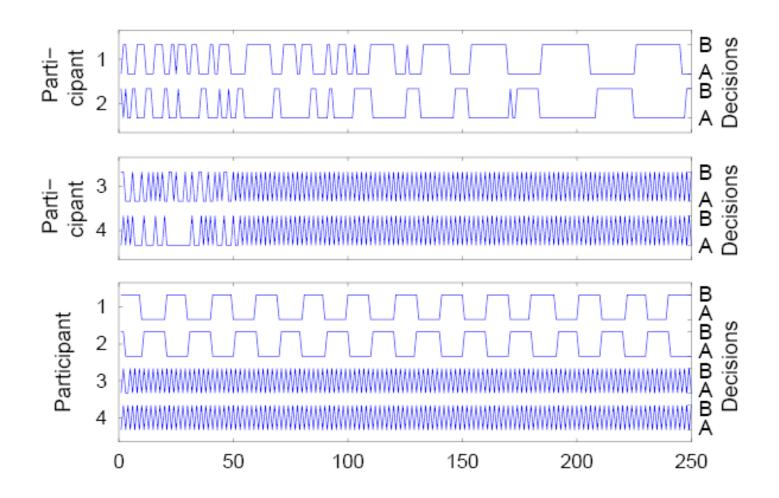

- \bullet r=2
- mutation probability: $\nu_l(t) = 0.03[1 \overline{P}_l^{(2)}(t)/100]$
- Initial conditions:
 - $p_l(B|A, N_A; 0) = 0$ and
 - $p_l(A|B, N_A; 0) = 1$



Comparison of Observables

Experiment:

Simulation:



or

Cooperation in 4 Person Game Enhanced by Experience

Faculty of Physics and Center of Excellence for Complex Systems Research (CSR), Warsaw University of Technology

Entscheidungstheoretische Experimente

Name, Vorname in Druckschrift	Erhaltener Betrag in EUR	Datum	Unterschrift
Gatkowski, Jacek	76,62	26.11.03	Materslei
Molak, Marcin	22,46	26.11.03	Malax
Kowalczyk, Grzegorz	15,82	26.21.03	gleoustyle
Miktarek, Grzegorz	79,74	2611.03	Nelick
Kaminska, Kamila	76,76	27.11.03	Lewis LO
Teterycz, Matyurzata	24,88	27.77.03	Morfarote Tetera
Zolunowicz, Marinsz	78,36	27.71.03	Mariase Idanosia
Radomski, Wojciech	77,44	27.12.03	Radomski Wojciech
Zielinski, Rafal	15,90	28.11.03	Zicliniski"
Ziotkowski, Michał	23,42	28.71.03	201/208la Hiche
Jasinski, Michat	13,26	28.11.03	M. Josiahn
Bulaszewski, Maciej	14,06	28.71.03	Belosensis
Zubdyr, Barttomiej	73,86	07.72.03	Blow
Galas, Jacek	28,00	01.12.03	Males
Rudzinski, Przemystor	75,06	07.12.03	Fustrial star
Siemion, Andrzej	73,78	07.72.03	Sveuven
Ludwiczuk, Protrek	79,68	02.12.03	Johnmel
Slusurevk, Boyumit	77,60	02.12.05	Mark
Wojcieck, Katuzny	14,40	62 72 63	Washak
Wojtanek, Mugda	79,68	02 12 -03	Agitaine S

HOW INDIVIDUALS LEARN TO TAKE TURNS: EMERGENCE OF ALTERNATING COOPERATION IN A CONGESTION GAME AND THE PRISONER'S DILEMMA

DIRK HELBING, MARTIN SCHÖNHOF and HANS-ULRICH STARK

Institute for Transport & Economics, Dresden University of Technology, Andreas-Schubert-Str. 23, 01062 Dresden, Germany

JANUSZ A. HOŁYST

Faculty of Physics and Center of Excellence for Complex Systems Research, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland

Faculty of Physics and Center of Excellence for Complex Systems Research (CSR), Warsaw University of Technology

Conclusions

A spontaneous cooperation can occur in a simple 2x2 game

The cooperation can lead to coherent oscillatory states in players behaviour

Oscillatory states correspond to system equilibrium

A transition to oscillatory states needs spontaneous flipping of players decisions

