Thermal vacancy thermodynamics and ordering kinetics in B2 AB intermetallics COST 535, COST P19

Rafał Kozubski, Andrzej Biborski, Łukasz Zosiak

Interdisciplinary Centre for Materials Modelling, M. Smoluchowski Institute of Physics, Jagellonian University Krakow, Poland

Outline:

- •"Order-order" kinetics
- •NiAl surprising experimental result
- •MC simulations with temperature
 - dependent vacancy concentration
- Model for vacancy thermodynamics
- Results

CONCLUSION: BOTH METHODS YIELD COMPLEMENTARY INSIGHT INTO ATOMIC JUMP DYNAMICS

SYNTHESIS: analysis of "order-order" relaxation isotherms in **bulk** intermetallics

R.Kozubski et al., Intermetallics, 11,897-905,(2003).

GENERATION OF ANTISITE DEFECTS without perturbing superlattice geometry:

Initial (starting) configuration:

pair of V_A and V_B vacancies

Variant 1: generation of A_B and B_A antisite pairs

Variant 2: generation of triple defects

Result: pair of V_A and V_B vacancies + pair of A_B and B_A antisites Process may continue !

Result:pair of V_A vacancies+single A_B antisite"triple defect"Vacancies almost immobile !Condition: $E_F(V_B) >> E_F(A_B)$

"ORDER-ORDER" KINETICS IN TRIPLE-DEFECT B2-ORDERED AB SYSTEMS:

DISORDERING (GENERATION OF ANTISITE DEFECTS):

ORDERING (ELIMINATION OF ANTISITE DEFECTS):

STANDARD MONTE CARLO SIMULATIONS IN BULK:

•A₃B or AB binary system with L1₂, L1₀ or B2 superstructure,

•40 \times 40 \times 40 cubic cells,

1 vacancy (10 vacancies in a piloting study)

general assumption: vacancy mechanism of atomic migration

,

Glauber dynamics algorithm:

$$\Pi_{i \to j} = \frac{\exp\left[-\frac{\Delta E}{kT}\right]}{1 + \exp\left[-\frac{\Delta E}{kT}\right]}$$

"Residence-time" algorithm:

$$\Pi_{i \to j} = \Pi_{0} \times \exp\left[-\frac{E_{i}^{+} - E_{i}}{kT}\right]$$

$$\Pi_{0} = \left[\sum_{l} \exp\left(-\frac{E_{l}^{+}-E_{l}}{kT}\right)\right]$$

PROBLEM:

Because of possible correlation between antisite and vacancy concentrations MC simulation with fixed number of vacancies is no longer justified

MODEL: EQUILIBRIUM CONCENTRATION OF THERMAL VACANCIES

W. Schapink, Scr. Metall. 3, 113, (1969).
S. H. Lim, G. E. Murch, W. A. Oates, J. Phys. Chem. Solids 53, 181, (1992)
R. Kozubski, Acta Metall. Mater. 41, 2565, (1993).

Definitions :

$$W = 2V_{AB} - V_{AA} - V_{BB}$$

 $E_{as} = V_{AA} - V_{BB}$

Calculations were made for various sets of energies

	W [eV]	E _{as} [eV]	V _{BB} [eV]	V _{AV} [eV]	V _{BV} [eV]	Structural vacancies	Plateau
SET1	-0,08	-0,03	-0,05	0,0	0,0	No	No
SET2	-0,08	-0,07	-0,05	0,0	0,0	No	Partially
SET3	-0,08	-0,07	-0,05	0,051	-0,051	Yes	Yes

STOICHIOMETRIC BINARY SYSTEM A₅₀B₅₀

MAIN RESULT (from Bragg-Williams calculations)

IN PROGRESS: MC on Grand Canonical Ensemble

SET 3 energetics

no plateau; [] "higher-level plateau"; "plateau".

NON-STOICHIOMETRIC BINARY SYSTEMS

CONSTITUTIONAL VACANCIES IN A_{0.49}B_{0.51}

GENERATION OF CONSTITUTIONAL VACANCIES:

T > 0 K

Two phases decomposition in SGCMC

Monoatomic system with vacancies in bcc Vaa=-0.12[ev] Vvv=0 [eV], Vav=Vva=-0.01 [eV]

FIRST MC SIMULATIONS OF DISORDERING KINETICS

Conclusions:

Initial stage: fast creation of triple defects (only A-antisites) Continuation: very slow generation of A- and B-antisites

CONCLUSIONS:

 Triple-defect-type correlation between antisite and vacancy concentrations in B2ordering AB binary follows from a Bragg-Williams model of atom-vacancy lattice gas

•Vacancy trapping by triple defects results in substantial slowing-down of "orderorder" relaxations in B2 intermetallics showing very high vacancy concentration