

Mikrostruktura

oraz procesy przemagnesowania w magnetycznie twardych i miękkich stopach żelaza **Jacek Olszewski** Instytut Fizyki, Wydział Inżynierii Procesowej, Materiałowej i Fizyki **Stosowanej POLITECHNIKI CZĘSTOCHOWSKIEJ**

> Akademia Górniczo - Hutnicza Kraków 19.10.2007

Plan prezentacji

2. Cel pracy

- 3. Badane materiały, ich wytwarzanie i warunki obróbki
- 4. Mikrostruktura i procesy przemagnesowania w stopach magnetycznie twardych
- stopy wykazujące anizotropię kształtu
- stopy o dużej anizotropii magnetokrystalicznej
- 7. Mikrostruktura i procesy przemagnesowania w stopach magnetycznie miękkich
- stopy Fe-Si o podwyższonej zawartości krzemu
- stopy amorficzne
- stopy nanokrystaliczne
- 11.Podsumowanie i wnioski

Cel pracy

Celem pracy było wykazanie możliwości kreowania w realnych stopach żelaza struktur magnetycznych charakteryzujących się pożądanymi procesami przemagnesowania i wynikającymi stąd założonymi właściwościami magnetycznymi poprzez kształtowanie w tych stopach odpowiedniej mikrostruktury.

Zbadano

- skład fazowy próbek
- morfologię wydzieleń faz i ich wzajemne ułożenie
- pole koercji i jego kątową zależność od pola pomiarowego
- podatność magnetyczną i jej dezakomodację
- zależności magnetyzacji od natężenia pola pomiarowego i temperatury pomiaru
- straty z histerezy rotacyjnej.
- Metody badań mikrostruktury
- spektroskopia mössbauerowska,
- dyfrakcja promieniowania rentgenowskiego,
- transmisyjna mikroskopia elektronowa.
- Metody badań właściwości magnetycznych
- magnetometr wibracyjny
- anizometr
- waga magnetyczna
- układ do pomiaru podatności magnetycznej i jej dezakomodacji metodą transformatorową

Badane materiały

Stopy magnetycznie twarde

stopy Fe – Cr – Co wykazujące anizotropię kształtu

~ 1070K rozpad spinodalny

brak opisu

- budowy faz
- ewolucji struktury w trakcie obróbki stopów

{100}	H Zew

Skład chemiczny stopów								
Fe – Cr – Co (%at.)								
Со	8,75	11,85						
Cr	29,4	29,4						
Fe	60,35	57,28						
Si+Ti	1,5	1,5						

stopy wykazujące dużą anizotropię magnetokrystaliczną

Tetragonalna komórka elementarna związków Re₂Fe₁₄B

Stopy magnetycznie miękkie

Stopy Fe – Si

wzrost zawartości krzemu

pojawienie się

- dodatkowych pasm dezakomodacji podatności magnetycznej
- uporządkowania atomowego

zmniejszenie

- anizotropii magnetokrystalicznej
- magnetostrykcji
- przewodnictwa elektrycznego

wzrost

twardości i kruchości

skład chemiczny stopów (w %at.)

stop	szybkie chłodzenie (mikrokrystaliczny)	metoda CVD
Fe	88.0	88,1
Si	11,7	11,6
zanieczyszczenia	<	: 0,3

Mikrostruktura i procesy przemagnesowania w stopach magnetycznie twardych 1,0

Stopy wykazujące anizotropię kształtu

Zależność pola koercji od kąta pomiędzy kierunkiem jednoosiowej anizotropii magnetycznej w próbce a przyłożonym polem magnetycznym (a) dla stopu $Fe_{61,85}Cr_{29,4}Co_{8,75}$ po całkowitej obróbce cieplnej w polu magnetycznym.

Zredukowane pole koercji dla zbioru jednodomenowych cząstek w kształcie nieskończenie długich, równoległych i nieoddziałujących ze sobą walców

i nieoddziałujących ze sobą walców w funkcji kąta Θ pomiędzy kierunkiem zewnętrznego pola magnetycznego a osią walca. Parametrem jest zredukowany promień walca S (S. Shtrikman, D. Treves)

 $h_{\rm C} = 1,08S^{-2}(1-1,08S^{-2})[(1,08S^{-2})^2 + (1-2,16S^{-2})\cos^2\Theta]^{-1/2}$

Straty z histerezy rotacyjnej (W_R) w zależności od przyłożonego pola (H) (b) dla stopu $Fe_{58,75}Cr_{29,4}Co_{11,85}$ po różnych stadiach obróbki cieplnej w polu magnetycznym. $W_R(H) = \int_{0}^{2\pi} T(H,\Theta) d\Theta$

Zredukowane straty energii na histerezę rotacyjną W_R dla zbioru nieoddziałujących ze sobą cząstek w kształcie nieskończenie długich, równoległych walców w funkcji zredukowanego zewnętrznego pola magnetycznego h. Parametrem jest zredukowany promień walca S.

$$N_{R}^{2} = 4W_{R}/\mu_{0}M_{S}^{2}$$

Dla modelu wydzieleń o skończonych wymiarach

 $\mathbf{c} = \mathbf{b}/\mathbf{a} = \mathbf{6}$

Przykładowe widmo mössbauerowskiedlastopu $Fe_{58,75}Cr_{29,4}Co_{11,85}$ pocałkowitejobróbcecieplnejwmagnetycznym

$$A_{2,5}^{\perp} = 3,3 \div 3,5$$

$$A_{2,5}^{II} = 0,3 \div 0,5$$

Teksturę fazy α_1 można wyrazić za pomocą funkcji $f(\alpha) = C(n) \cos^n \alpha$ α – kąt pomiędzy osiami wydzieleń fazy α_1 a osią makroskopowej anizotropii, C(n) – czynnik normalizujący, a n – parametr rozkładu.

 $A_{2,5} = \frac{4\sin^2\beta}{1+\cos^2\beta} \begin{array}{l} \beta & - \text{ kat pomiędzy wektorem indukcji nadsubtelnego pola} \\ \text{magnetycznego i kierunkiem rozchodzenia się promieniowania} \\ \gamma \\ A_{2,5}^{\perp} = \frac{4(n+2)}{n+4} \quad i \quad A_{2,5}^{11} = \frac{4}{n+2} \qquad \frac{M_r}{M_s} = \frac{n+1}{n+2} \\ \hline 6 < n < 12 \qquad \qquad n = 8,5 \end{array}$

Przykładowe widmo mössbauerowskie
dla stopu $Fe_{58,75}Cr_{29,4}Co_{11,85}$ po
całkowitej obróbce cieplnej w polu
magnetycznym

Parametry mössbauerowskie widm elementarnych dla stopu Fe_{58,75}Cr_{29,4}Co_{11,85}.

sekstet	Ι	II	III	IV	V			
B _n [T]	35,2	31,7	28,2	20,8	16,0			
IS [mm/s]	0,02	0,007	-0,007	-0,035	-0,053			
	Fe ₇ Co ₁	Fe ₆ Co ₁ Cr ₁	Fe ₅ Co ₁ Cr ₂	Fe ₃ Co ₁ Cr ₄	$(\mathbf{Fe}_{\mathbf{x}}\mathbf{Co}_{1-\mathbf{x}})_{40}\mathbf{Cr}_{60}$			
Linia lorentzowska IS [mm/s] = -0.071 (Fe Co) Cr								

Schemat przekroju poprzecznego wydzielenia fazy α_1 zanurzonego w osnowie fazy α_2 w stanie po chłodzeniu w polu magnetycznym (a) i po całkowitej obróbce (b).

Materiały magnetyczne o dużej anizotropii magnetokrystalicznej.

Przykładowe widmo mössbauerowskie wraz z rozkładem na składowe elementarne dla stopu Nd₁₈Fe₇₆B₆.

Parametry mössbauerowskie faz zidentyfikowanych w stopach Nd-Fe-B

Faza	Względne	IS	B _n	QS
	natężenie	[mm/s]	[T]	[mm/s]
α-Fe	-	0	33,0	0
Nd ₂ Fe ₁₄ B	1 (4e)	-0,12	28,4	0,45
	1 (4c)	-0,04	26,0	0,10
	2 (8j ₁)	0,01	28,9	0,11
	2 (8j ₂)	0,08	34,1	0,32
	4 $(16k_1)$	-0,02	28,8	0,28
	$4 (16k_2)$	-0,18	29,6	0,02
faza	1	-0,17	29,5	0,06
Nd ₂ Fe ₁₇	3	-0,07	26,8	0,06
$\overline{\mathrm{Nd}}_{1+\delta}\mathrm{Fe}_{4}\mathrm{B}_{4}$	-	0,03	-	0,65

Faza	92	23 K/20 1	min	1123 K/20min			
	x = 6	x = 11	x = 18	x = 6	x = 11	x = 18	
α-Fe	0,57	0,21	0	0,62	0,22	0	
Nd ₂ Fe ₁₇	0,41	0	0	0,32	0	0	
$Nd_{1+\delta}Fe_4B_4$	0,02	0	0,10	0,06	0,05	0,02	
Nd ₂ Fe ₁₄ B	0	0,79	0,90	0	0,73	0,98	

Względna zawartość faz w stopach Nd_xFe_{94-x}B₆ (x = 6, 11, 18) po różnych obróbkach cieplnych

Za	H _c		E	B _r	(BH) _{max}		
war	ſkA	m ⁻¹]	[1]		[k.Jm ⁻³]		
tość	923	1123	923	1123	923	1123	
Nd	K	K	K	K	K	K	
6	175	37,5	1,07	1,02	90	83	
11	260	220	0,89	0,79	63	50	
18	1000	350	0,61	0,54	28	22	

Wartości pola koercji (H_C), remanencji (B_r) i maksymalnej gęstości energii (BH)_{max} dla stopów $Nd_xFe_{94-x}B_6$ (x = 6, 11, 18). Krzywe odmagnesowania dla dwóch ziaren sprzężonych oddziaływaniem dipolowym (a), wymiennym (b) z osiami pod kątem 65° w stosunku do pola magnetycznego. Krzywa (c) odpowiada izolowanemu ziarnu. (H. Kronmüller)

Mikrostruktura i procesy przemagnesowania w stopach magnetycznie miękkich

Stopy Fe-Si o podwyższonej zawartości krzemu

Widmo mössbauerowskie wraz z rozkładem na składowe elementarne dla stopu Fe₈₈Si₁₂ uzyskanego metodą CVD.

$$A_{2,5} = 2,3$$

Parametry mössbauerowskie widm

	Sekstet								
	Ι	II	III	IV	V				
B _n [T]	33,00	31,00	28,40	24,40	19,50				
IS [mm/s]	0,001	0,05	0,1	0,17	0,25				
atomy Si	0	1	2	3	4				

Początkowa podatność magnetyczna (χ), maksimum jej dezakomodacji ($\Delta(1/\chi) = 1/\chi_{120} - 1/\chi_2$), parametry uporządkowań bliskiego $\alpha_{Si,Fe}(1)$ i dalekiego S_{Fe} zasięgu dla polikrystalicznego stopu Fe_{88,1}Si_{11,9} (P) po różnych obróbkach cieplnych

obróbka	χ	$\Delta(1/\chi) \cdot 10^{6}$	parametr uporządkowania
po otrzymaniu	700	80	$S_{Fe}(Fe_{3}Si) = 0,2$
1370 K/1h piec	1306	186	$S_{Fe}(B2) = 0,48$
1370 K/1h woda	1858	112	$\alpha_{_{\rm Si,Fe}}(1) = -0,35$

Widma dezakomodacji początkowej podatności magnetycznej dla stopu F₈₈Si₁₂ w stanie po zestaleniu (krzywa 1) i po wygrzaniu w temperaturze 1370 K przez 1 godz. (krzywa 2)

Wyznaczoneenergieaktywacjiprocesówelementarnychprzy τ_0 i $= 3,6\cdot10^{5}s$: $Q_1 = 0,84 - 0,85$, $Q_2 = 0,88 - 0,92$, $_3Q = 0,94 - 0,99$, $Q_4 = 1,03 - 1,07$

Stopy amorficzne

Mikrostruktura stopów

Przykładowe zdjęcie mikrostruktury i odpowiadający jej elektronogram dla stopu $Fe_{74}Cu_1Nb_3Si_{12}B_{10}$ w stanie po zestaleniu.

Przykładowe widma mössbauerowskie (a, c, e, g) wraz z odpowiadającymi im rozkładami indukcji pól nadsubtelnych na jądrach ⁵⁷Fe (b, d, f, h) dla grupy stopów amorficznych $Fe_{77-x-y}Cu_xNb_ySi_{13}B_{10}$: x=0, y=0 (a, b); x=1, y=1 (c, d); x=1, y=2 (e, f); x=1, y=3 (g, h) w stanie po zestaleniu

Próbki i ich obróbka cieplna			<a<sub>2,5></a<sub>	D _{am} [T]	Wartość indukcji
Stop	y typu finemet	,			efektywnego pola
Eo Si B	po zestaleniu	24,68	2,9	2,99	nadsubtelnego na
$\Gamma e_{77} S I_{13} D_{10}$	693 K/1 h	25,20	2,8	2,99	Jądrach ³⁷ Fe (B _{ef}),
Eo Si D Cu Nh	po zestaleniu	20,42	2,4	4,90	nateżenie linii 2
$re_{73}SI_{13}D_{10}Cu_1ND_3$	693 K/1 h	20,98	2,6	5,08	i 5 w sekstecie
Fe _{66.5} Co ₇ Si _{13.5} B ₉ Cu ₁ Nb ₃	po zestaleniu	21,18	2,3	4,69	zeemanowskim
	po zestaleniu	11,63	2,7	5,21	(<a<sub>2,5>),</a<sub>
$\mathbf{F}\mathbf{e}_{64,5}\mathbf{C}\mathbf{F}_{6}^{\mathbf{W}\mathbf{IO}}_{1}\mathbf{S}\mathbf{I}_{13,5}\mathbf{D}_{9}\mathbf{C}\mathbf{U}_{1}^{\mathbf{W}\mathbf{IO}}_{3}$	773 K / 1 h	11,96	2,7	5,34	rozkładu pola
Stopy	typu nanoperi	m			nadsubtelnego
	po zestaleniu	12,70	3,9	4,47	fazy amorficznej
$\mathbf{F}\mathbf{e}_{85,4}\mathbf{\Sigma}\mathbf{\Gamma}_{6,8}\mathbf{D}_{6,8}\mathbf{U}\mathbf{u}_{1}$	688K/15min	12,24	2,2	4,44	(D _{am})
Stopy					
	po zestaleniu	29,51	2,7	3,87	
$Fe_{42,7}Co_{42,7}Zr_{6,8}B_{6,8}Cu_{1}$	573K/1 h	29,68	2,7	4,27	
	723K/5min	30,17	2,7	4,72	

Właściwości magnetyczne

Temperaturowa zależność początkowej podatności magnetycznej dla amorficznego stopu $Fe_{74}Cu_1Nb_2Si_{13}B_{10}$ w stanie po zestaleniu (a) ($H_c \sim 10$ A/m) oraz po wygrzaniu temperaturze 693 K przez 1 h (b) ($H_c \sim 2,9$ A/m) oraz dla stopu $Fe_{86}Zr_7B_6Cu_1$ w stanie po zestaleniu (c) oraz po obróbce cieplnej w temperaturze 573 K przez 1 h (d).

Temperaturowa zależność początkowej podatności magnetycznej (A) i tangensa kąta strat (B) dla stopu $Fe_{90}Zr_7B_2Cu_1$ w stanie po zestaleniu (a), po obróbce cieplnej w temperaturze 573 K przez 1 h (b) oraz 725 K przez 15 min (c).

Zależność magnetyzacji od pierwiastka z natężenia pola pomiarowego dla stopów $Fe_{85,4}Zr_{6,8-x}Nb_xB_{6,8}Cu_1$ po wygrzaniu w temperaturze 573 K przez 1 h: x = 0 (a), x = 1 (b); dla porównania załączono krzywą dla niklu (c) (za M_s przyjęto $M(H_{max})$)

$$M(H) = M_{s} + b \left(\frac{H}{0}\right)^{1/2}$$

Przykladowewidmadezakomodacjipodatnościmagnetycznejdlastopu $Fe_{86}Zr_7B_6Cu_1$ $Fe_{86}Zr_7B_6Cu_1$ wstaleniu(a)orazpowygrzaniuwtemperaturze573K przez 1h (b).

Rozkład krzywych dezakomodacji na trzy procesy elementarne. Wartości energii procesów 0,61 ÷ 1,68 eV Wartość czynnika przedeksponencjalnego rzędu 10⁻¹⁵ s. Stopy nanokrystaliczne

Krystalizacja stopów amorficznych

*Przykładowe krzywe DSC dla stopów Fe*_{85,4} $Zr_{6,8-x}Nb_xB_{6,8}Cu_1$: x = 0 (a) i x = 1 (b) dla prędkości grzania 10 K/min.

Krystalizacja pierwotna badanych stopów amorficznych Stopy typu nanoperm

Przykładowe widmo mössbauerowskie wraz z rozkładem pól nadsubtelnych dla stopu typu nanoperm po wygrzaniu w temperaturze 800 K przez 1 h.

Parametry *mössbauerowskie*, skład fazowy i mikrostruktura próbek stopu

 $Fe_{85,4}Zr_{5,8}Nb_1B_{6,8}Cu_1$ po różnych obróbkach cieplnych

1.35	Obróbka	$(\mathbf{B}_{ef})_{am}$	Fe _{am}	$(\mathbf{B}_{ef})_{p}$	Fe _p	V _p	B _k	Fe _k	V _k
-	Cieplna	[T]	[%		[% at]		[T]	[% at]	
	688K/2h	13,30	85,7	28,90	79,3	0,03	32,46	95,5	0,06
	784K/5s	13,30	85,5	26,00	71,0	0,18	32,60	97,0	0,19
	784K/0,2h	12,90	81,6	27,30	73,1	0,22	32,80	98,5	0,33
20 nm	800K/1h	10,50	80,0	27,40	73,1	0,35	33,00	100	0,39

Stopy typu hitperm

Przykładowe widmo mössbauerowskie wraz z rozkładem pól nadsubtelnych dla stopu typu hitperm po wygrzaniu w temperaturze 730 K przez 70m.

Parametry *mössbauerowskie*, skład fazowy i mikrostruktura próbek stopu $Fe_{42,7}Co_{42,7}Zr_{5,8}Nb_1B_{6,8}Cu_1$ po różnych obróbkach cieplnych

Stopy typu finemet

Przykładowe widmo mössbauerowskie wraz z rozkładem pól nadsubtelnych dla stopu Fe_{73,5}Cu₁Nb₃Si_{13,5}B₉ po wygrzaniu w temperaturze 823 K przez 1h

Mikrostruktura stopu Fe_{73,5}Cu₁Nb₃Si_{13,5}B₉ po wygrzaniu w temperaturze 823 K przez 1h

Mikrostruktura stopu $Fe_{77,5}Si_{13,5}B_9$ wygrzanego w temperaturze 773 K przez0,5 h..

Skład fazowy i pole koercji stopu $Fe_{73,5}Cu_1Nb_3Si_{13,5}B_9$ w stanie po zestaleniu i różnych obróbkach cieplnych

obróbka	$\mathbf{V}_{\mathbf{k}}$	Fe _k [% at]	Fe _{am} [% at]	$H_{C}[A/m]$	S _{Fe}	$\mathbf{P}_{\mathrm{si,Fe}}(1)$
cieplna					Fe ₃ Si	
0	0	-	73,5	11,03	-	-
763 K/h.	0,18	75,0	73,2	2,79	0	-
773 K/5min	0,20	76,3	72,8	-	-	-0,12
773 K/1h.	0,24	76,7	72,5	2,23	0,13	-
823 K/5s	0,30	75,0	72,9	-	-	-0,24
823 K/1h	0,50	79,0	68,0	2,00	0,64	-

Właściwości magnetyczne stopów nanokrystalicznych Superparamagnetyzm we wczesnych stadiach krystalizacji amorficznych stopów Fe-(Cr)-Si-B-Cu-Nb i Fe-Zr-(Nb)-B-Cu

temperatura [K]

300

Mikrostruktura i elektronogram dla próbki stopu nanoperm po wygrzewaniu w temperaturze 688 K przez 15 min.

Temperaturowa zależność indukcji pola nadsubtelnego i szerokości połówkowej linii w sekstecie zeemanowskim dla omawianego stopu $Fe_{00}Zr_7B_7Cu_1$

Superparamagnetyczny wkład w namagnesowanie dla omawianego stopu Fe₉₀Zr₇B₂Cu₁

Krzywe magnetyzacji w różnych temperaturach dla omawianego stopu $Fe_{90}Zr_7B_2Cu_1$

 $T_{cp} = 250 \text{ K}\mu = 360 \text{ }\mu_{B} \text{ }n = 3 \text{ }10^{7} \text{ }[1/g]$ $\mu_{Fe} = 2,2 \mu_{B} \text{ }; 1650 \text{ atomów Fe}; \text{ cząstka o}$ średnicy 3,9 nm, V_k = 0,05

$$M(B,T) = n \quad (T) \left[cth \left(\frac{-(T)B}{k_B T} \right) - \frac{-k_B T}{(T)B} \right] + M_{an}$$

$$M_{am}(B,T) = \frac{A}{T - T_{CP}}B$$

Superparamagnetyczny wkład w namagnesowanie dla próbki stopu $Fe_{65,5}Cr_7Cu_1Mo_1Nb_3Si_{13,5}B_9$ wygrzanego w temperaturze 818 K przez 15 min

Stopy typu finemet

Zależność początkowej podatności magnetycznej od temperatury dla próbek stopu Fe_{73,5}Cu₁Nb₃Si_{15,5}B₇ wygrzanego w temperaturze 813 K przez 1 h i następnie chłodzonego do temperatury pokojowej z różnymi prędkościami Początkowa podatność magnetyczna dla nanokrystalicznego stopu Fe₇₄Cu₁Nb₃Si₁₂B₁₀

po wygrzaniu w różnych temperaturach i nanokrystalizacji w 823 K w czasie

Stopy typu hitperm

Izochroniczne krzywe dezakomodacji podatności magnetycznej dla nanokrystalicznego stopu typu hitperm odpowiadające różnym czasom t_2 , po których dokonywano pomiarów podatności $\chi(t_2)$

Temperaturowa zależność dezakomodacji początkowej podatności magnetycznej dla stopu typu hitperm wygrzanego w temperaturze 573 K przez 1 h (a), 730 K przez 70 min (b) i 800 K przez 5 min (c) oraz częściowo skrystalizowanego podczas zestalania (d) ponadto $\Delta(1/\chi) = f(t)$ dla stopu F $_{85,4}$ Zr $_{5,8}$ Nb $_{1}B_{6,8}$ Cu $_{1}$ po całkowitej obróbce (e)).

Podsumowanie i wnioski

Do oryginalnych osiągnięć badań można zaliczyć:

1. Opracowanie dla stopów Fe-Cr-Co modelu struktury faz i ich ewolucji podczas obróbki cieplnej tych stopów.

 Wykazanie możliwości otrzymania charakteryzującej się dużą koercją fazy Nd₂Fe₁₄B w stopach Nd-Fe-B otrzymywanych na drodze syntezy mechanicznej pierwiastków składowych.

3. Analizę zmian mikrostruktury stopów Fe-Si o podwyższonej zawartości krzemu oraz wskazanie, że najlepszymi miękkimi właściwościami magnetycznymi charakteryzują się stopy o najmniejszym uporządkowaniu atomowym.

4. Wykazanie istnienia efektu inwarowego w amorficznych stopach Fe-Zr-(Nb)-B-(Cu) i wskazanie przyczyn jego powstawania.

5. Opis ewolucji struktury fazowej stopów Fe-(Co)-Zr-(Nb)-B-Cu w trakcie ich obróbki cieplnej, jak również określenie warunków niezbędnych dla uporządkowania atomowego wydzieleń faz krystalicznych.

6. Określenie rozmiarów i gęstości cząstek superparamagnetycznych oraz ich obserwacje mössbauerowskie w stopach Fe-Zr-(Nb)-B-Cu

7. Wykazanie możliwości poprawy miękkich właściwości magnetycznych stopów Fe-(M)-Si-B-Nb-Cu poprzez ich wielostopniową obróbkę cieplną i dobór optymalnej prędkości chłodzenia do temperatury pokojowej, jak również wykazanie istnienia niskotemperaturowych pasm dezakomodacji podatności magnetycznej w stopach Fe-Co-Zr-(Nb)-Cu, które nie znikają podczas nanokrystalizacji tych stopów.

Dorobek naukowy

autor:

1 monografii;

4 artykułów (2 z listy filadelfijskiej);

współautor:

63 artykułów (41 z listy filadelfijskiej);

85 komunikatów konferencyjnych

współwykonawca:

9 programów badawczych KBN