Uporządkowanie magnetyczne w niskowymiarowym magnetyku molekularnym (tetrenH₅)_{0.8}Cu₄[W(CN)₈]₄ · 7.2H₂O

T. Wasiutyński

Instytut Fizyki Jądrowej PAN

15 czerwca 2007

- M. Bałanda, R. Pełka, P. M. Zieliński IFJ PAN
- B. Sieklucka, R. Podgajny, T. Korzeniak Wydz. Chemii UJ
- M. Rams IF UJ
- Cz. Kapusta et al WFTiIS AGH

- Badania magnetyczne
 zachowanie krytyczne
- implantacja mionów
 - ISIS
 - implantacja mionów
 - funkcje korelacji
 - wyniki

< < >> < </>

• magnetyki organiczne T $_c \sim$ 14 K

- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura
- . . .

- magnetyki organiczne T $_c \sim 14$ K
- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura
- . . .

- magnetyki organiczne T $_c \sim$ 14 K
- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura
- . . .

- magnetyki organiczne T $_c \sim$ 14 K
- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura

• . . .

- magnetyki organiczne T $_c \sim$ 14 K
- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura

• . . .

- magnetyki organiczne T $_c \sim 14$ K
- magnetyki molekularne w temperaturze pokojowej
- magnetyzm indukowany światłem
- nanomagnesy (SINGLE MOLECULE MAGNETS)
- rozbudowana architektura
- . . .

zachowanie krytyczne

Cu(II) s= $\frac{1}{2}$ W(V) s= $\frac{1}{2}$

<ロト <回 > < 注 > < 注 > 、

æ

Cu-W(CN)₈

zachowanie krytyczne

zachowanie krytyczne

podatność magnetyczna

1

2

ъ

zachowanie krytyczne

Cu-W(CN)₈

namagnesowanie

- ⇐ chłodzenie w polu 2 kOe
 - duża anizotropia magnetyczna
 - łatwa płaszczyzna magnetyczna ac
 - różne tempo wzrostu namagnesowania

Badania magnetyczne

namagnesowanie T = 4.2 K

イロト イポト イヨト イヨト

æ

zachowanie krytyczne

ciepło właściwe

$$\Delta S = 7.1 \pm 1.5 \text{ J/K mol}$$

gdy:
 $\Delta S_{max} = 8R \log(2s + 1)$
= 46.1 J/K mol

ъ

2

T. Wasiutyński Cu-W(CN)8

zachowanie krytyczne

Plan

Badania magnetyczne zachowanie krytyczne

- implantacja mionów
 - ISIS
 - implantacja mionów
 - funkcje korelacji
 - wyniki

э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

zachowanie krytyczne

skalowanie podatności

W pobliżu przejścia fazowego II rodzaju długość korelacji ma osobliwość:

$$\xi(T) \sim (T/T_c - 1)^{-\iota}$$

Można badać osobliwość innych wielkości gdy wiemy jak skalują się one z $\xi(T)$. Souletie (2000) zaproponował skalowanie χT zamiast χ :

$$\chi \sim (T/T_c - 1)^{-\gamma} \rightarrow \chi T = C(1 - T_c/T)^{-\gamma}$$

gdzie $\gamma = (2d' - d)\nu$. Pochodna logarytmiczna pozwala znaleźć parametry:

$$d \log T/d \log(\chi T) = -(T - T_c)/(\gamma T_c)$$

T. Wasiutyński

ISIS implantacja mionów funkcje korelacji wyniki

Plan

Motywacja

Badania magnetyczne
 zachowanie krytyczne

implantacja mionów ISIS

- implantacja mionów
- funkcje korelacji
- wyniki

<ロ> (四) (四) (日) (日) (日)

ISIS implantacja mionów funkcje korelacji wyniki

Rutherford Laboratory

T. Wasiutyński

Cu-W(CN)8

ISIS implantacja mionów funkcje korelacji wyniki

ISIS

SIS mplantacja mionóv unkcje korelacji vyniki

aparaty

4

æ

T. Wasiutyński Cu—W(CN)₈

ISIS implantacja mionów funkcje korelacji wyniki

Plan

Motywacja

Badania magnetyczne
 zachowanie krytyczne

implantacja mionów

- ISIS
- implantacja mionów
- funkcje korelacji
- wyniki

3

<ロ> (四) (四) (日) (日) (日)

ISIS implantacja mionów funkcje korelacji wyniki

Implantacja μ^+

Tylko oddziaływania kulombowskie, spin zachowany

4

イロト 不得 トイヨト イヨト

T. Wasiutyński Cu-W(CN)8

ISIS implantacja mionów funkcje korelacji wyniki

Implantacja μ^+

Tylko oddziaływania kulombowskie, spin zachowany

46

イロト 不得 トイヨト イヨト

T. Wasiutyński Cu-W(CN)8

ISIS implantacja mionów funkcje korelacji wyniki

Rozpad μ^+

ISIS implantacja mionów funkcje korelacji wyniki

Rozpad μ^+

ISIS implantacja mionów funkcje korelacji wyniki

Rozpad μ^+

ISIS implantacja mionów funkcje korelacji wyniki

Rozpad μ^+

ヘロト ヘアト ヘビト ヘ

ISIS implantacja mionów funkcje korelacji wyniki

Plan

Motywacja

Badania magnetyczne
 zachowanie krytyczne

implantacja mionów

- ISIS
- implantacja mionów
- funkcje korelacji
- wyniki

▶ < ≣ >

ISIS implantacja mionów funkcje korelacji wyniki

Relaksacja statyczna

Lokalne pole odpowiedzialne za precesję spinu wynika z oddziaływań dipolowych z otaczającymi je spinami jądrowymi i elektronowymi.

Gaussowski rozkład pola (słabe magnetyki lub szkła):

$$P^{G}(B_{i}) = \frac{1}{\sqrt{2\pi}\Delta} \exp(-B_{i}^{2}/2\Delta^{2}) \qquad (i = x, y, z)$$

Rozkład Lorentza (układy z domieszkami magnetycznymi):

$$P^{L}(B_{i}) = \frac{1}{\pi} \frac{\Lambda}{\Lambda^{2} + B_{i}^{2}}$$
 $(i = x, y, z)$

• funkcja relaksacji muonu dana jest przez średnią $s_z(t)$:

$$G_z(t) = \int s_z(t) P(\vec{B}) d^3 \vec{B}$$

ISIS implantacja mionów funkcje korelacji wyniki

relaksacja dynamiczna

Dla przypadku rozkładu gaussowskiego otrzymujemy (Kubo-Toyabe):

$$G_{z}^{G}(t) = \frac{1}{3} + \frac{2}{3}(1 - \gamma_{\mu}^{2}\Delta^{2}t^{2})\exp(-\gamma_{\mu}^{2}\Delta^{2}t^{2}/2)$$

ISIS implantacja mionów funkcje korelacji wyniki

Plan

Motywacja

Badania magnetyczne
 zachowanie krytyczne

implantacja mionów

- ISIS
- implantacja mionów
- funkcje korelacji
- wyniki

<ロ> (四) (四) (日) (日) (日)

ISIS implantacja mionów funkcje korelacji wyniki

wyniki

£

ISIS implantacja mionów funkcje korelacji wyniki

precesja w zerowym polu

$$B(T) = B_i (1 - \frac{T}{T_N})^{\beta}$$

$$\beta = 0.20$$

 $\begin{array}{ll} \mbox{model} & \beta \\ \mbox{Ising d=2} & 1/8 \\ \mbox{Ising d=3} & 0.326 \\ \mbox{Heisenberg d=3} & 0.385 \\ \mbox{mf} & 0.5 \\ \mbox{sferyczny} & 0.5 \\ \mbox{XY d=2} & (0.23) \end{array}$

ISIS implantacja mionów funkcje korelacji wyniki

pole dipolowe

-2

イロト イポト イヨト イヨト

T. Wasiutyński

Cu-W(CN)8

ISIS implantacja mionów funkcje korelacji wyniki

ISIS implantacja mionów funkcje korelacji wyniki

relaksacja

 $A(t) = A_0 e^{-\lambda t}$ dla t > 5 μ sec

- wyraźna osobliwość λ w T_N
- spowolnienie relaksacji w słabym polu podłużnym

A D > A B >

ff;

ISIS implantacja mionów funkcje korelacji wyniki

spin flop w polu podłużnym

ISIS implantacja mionów funkcje korelacji wyniki

I.I. Rabi (1898-1988) - on the discovery of the muon:

"Who ordered that?"

-2

ヘロン 人間 とくほとく ほとう