Struktura elektronowa i dynamika sieci czystego i zdefektowanego CoO

Urszula D. Wdowik, Krzysztof Parlinski

Wydzial Matematyczno-Fizyczno-Techniczny, Uniwersytet Pedagogiczny, Krakow

Seminarium WFiIS 3/04/2009

Outline

Introduction

- structure, electronic and magnetic properties of CoO
- 2 Methodology
- Results for defect-free CoO
- Phonons (direct method)
- Cobalt-deficient CoO
 - electronic structure
 - Iattice dynamics
- Fe-doped CoO
 - lattice dynamics
 - charge and spin states of Fe in CoO and vacancy-defected CoO
 - electronic structure

Structure, electronic and magnetic properties of CoO

CoO structure

High temperature structure

• Paramagnetic ($Fm\bar{3}m$)

Low temperature structure

- distorted NaCl structure $(R\bar{3}m)$ below $T_N = 293$ K
- rhombohedral distortion along <111>, 0.2 – 0.3°
- 2nd kind of antiferromagnetic ordering, AFII structure

Structure, electronic and magnetic properties of CoO

Electronic and magnetic properties of CoO

Experiment

- Insulator, $E_g = 2.5 2.8 \text{ eV}$ (experiment)
- $M_{total} = 3.8 3.98 \mu_B$

Theory (DFT)

- Charge-transfer insulator
- Strong on-site Coulomb interactions in 3d shell cannot be neglected (strongly correlated electron system)
- DFT+U formalism required
- Interactions between correlated states Hubbard potential U and the exchange interaction J

Calculations with +U formalism

Pseudopotential plane-wave method - VASP code

- spin-polarized DFT for AFII structure (64-atom supercell)
- Projector-augmented wave pseudopotentials (PAWs)
- Exchange-interaction: GGA+U
- Full relaxations of AFII structure
- U = ?, J = ?

Energy gap, spin magnetic moment, lattice constant vs U

Results

- a weak dependence upon U
- *M*_S changes by ca. 17%
- Underestimation of E_g for U < 5 eV</p>
- E_g vanishes for U = 1 eV (GGA limit)

Defect-free CoO. Results for U = 7.1 eV, J = 1 eV

U = 7.1 eV, J = 1 eV

- a = 4.27Å
- Rhombohedral distortion along <111> (0.3°)
 space group D⁵_{3d} (R3m)

•
$$M_{s} = 2.74 \mu_{B}$$

Method to calculate phonons

- Harmonic approximation
- Direct method PHONON software by K. Parlinski
 - displace crystallographically nonequivalent atoms from their equilibrium positions
 - calculate Hellmann-Feynman forces $\mathbf{F}(\mathbf{n},\mu) = \frac{-\delta E}{\delta \mathbf{R}(\mathbf{n},\mu)}$

$$F_i(\mathbf{n},\mu) = -\sum_{\mathbf{m},\nu,j} \Phi_{ij}(\mathbf{n},\mu,\mathbf{m},\nu) U_j(\mathbf{m},\nu)$$

• solve dynamical matrix
$$\mathbf{D}(\mathbf{k})$$

 $\omega^2(\mathbf{k}, j)\mathbf{e}(\mathbf{k}, j) = \mathbf{D}(\mathbf{k})\mathbf{e}(\mathbf{k}, j)$
 \Downarrow

- $\omega(\mathbf{k}, j)$ phonon frequencies
- e(k, j) polarization vectors of phonons

Phonon dispersion relations for U = 0 eV and U = 3 eV

- imaginary frequencies of acoustic modes ⇒ instability of such CoO structure
- significantly underestimated HF forces ⇒ artificial mode softening
- small $U_{eff} \Rightarrow$ too low repulsion in 3d shell

Dispersion relations and phonon DOS for U = 7 eV

Data for LO-TO splitting

- $\mathbf{D}(\mathbf{k}) = \mathbf{D}_{\mathbf{0}}(\mathbf{k}) + D_N(\epsilon_{\infty}, \mathbf{Z}^*, \dots)$
- high-frequency dielectric constant $\epsilon_{\infty} = 5.3^{[1]}$
- Born effective charges $|Z^*| = 2.06$

Experimental data from neutron scattering (T = 110 K)

[1] J. Sakurai, W.J.L. Buyers, R.A. Cowley, and G. Dolling, Phys. Rev. 167, 510 (1968)

Comparison with experiment

Experiment vs theory				
Γ-point frequencies	Neutron	Infrared	Theory	
(THz)	scattering ^[1]	spectroscopy ^[2]		
ωτο	10.50	10.40-10.50	10.25	
ω_{LO}	15.75	16.30-16.40	15.73	

Experimental data

 J. Sakurai, W.J.L. Buyers, R.A. Cowley, and G. Dolling, Phys. Rev. 167, 510 (1968)
 J.P. Gielisse, J.N. Plendl, L.C. Mansur, R. Marshall, S.S. Mitra, R. Mikolajewicz, and A. Smakula, J. Appl. Phys. 36 2426 (1965)

Heat capacity and Debye-Waller factors

[3] E.G. King nad A.U. Christensen, U.S. Bur.Mines. Tech. Paper 80, 1800 (1956); E.G. King, ibid. 80, 2399 (1956)
[4] W. Jauch and M. Reehuis, PRB 65, 125111 (2002)
[5] S. Sasaki F. Fujino, and K. Takeuchi, Proc. Jpn. Acad. B 55, 43 (1979)
[6] K.Ruebenbauer and U.D. Wdowik, J. Phys. Chem. Solids 65, 1785 (2004)

Electronic structure of CoO defected by cationic vacancies

Is CoO a stoichiometric material?

Native defects in CoO - cationic vacancies

- Co deficiency in 'almost stoichiometric' samples: 0.1-3%
- uncharged, singly and doubly charged vacancies
- nonstoichiometry depends on temperature and oxygen partial pressure

How to simulate point defects (vacancies, impurities)

- supercell approach
- remove atoms \Rightarrow vacancies
- replace host atoms by different kind of atoms \Rightarrow impurities

Electronic structure of CoO defected by cationic vacancies

Modeling of non-stoichiometric CoO

Atomic relaxation in defected systems

- oxygens surrounding vacancies displace outward vacancy site by 0.12 Å
- initial Co-O distance (2.15 Å) changes by ca. 0.01 Å

Electronic structure of CoO defected by cationic vacancies

Trivalent cations in CoO

Pure CoO

•
$$M_{\rm S} = 2.74 \mu_B$$

- valence charges $q_{Co} = +1.33e$, $q_{O} = -1.33e$
- Co²⁺-O 2.15 Å

Co_{0.97}O

- $M_{\rm S} = 3.15 \mu_B$
- *q*_{Co} = +1.65*e*
- Co³⁺ − O 2.05 Å
- 2 Co³⁺ in SC

$Co_{0.94}O$

- $M_{\rm S} = 3.16 \mu_B$
- *q*_{Co} = +1.68*e*
- $Co^{3+} O$ 2.05 Å
- 4 Co³⁺ in SC

Electronic structure of CoO defected by cationic vacancies

Location of trivalent cations

Electronic structure of CoO defected by cationic vacancies

Electronic structure of vacancy-defected CoO

charge transfer from Co to O (via s,p states)

•
$$\mathrm{Co}^{2+} \Rightarrow \mathrm{Co}^{3+} + \mathrm{e}^{-}$$

2 holes associated with vacancy are compensated by 2 Co³⁺

acceptor states in Co_{0.97}O

1 eV above VBM

acceptor states in Co_{0.94}O

1.5 eV above VBM

Lattice dynamics of cobalt-deficient CoO

Description of phonons within SC approach

- dimensions of D(k) increases to 3Ns
- number of phonon dispersion curves increases to 3N_S
- size of BZ conjugated with SC shrinks
- selection of a different kind of unit cell
 ↓
 number of phonon dispersion curves is blown up.

Lattice dynamics of cobalt-deficient CoO

Phonon form factor and filter

Phonon form factor

$$\mathcal{F}^{(p)}(\mathbf{k},j) = rac{1}{\mathbf{k}^2} \left| \sum_{\mu} rac{\mathbf{k} \cdot \mathbf{e}(\mathbf{k},j;\mu)}{\sqrt{M_{\mu}}} \right|^2$$

$$\int_{\Omega} d\Omega \, F^{(p)}(\mathbf{k},j) = \frac{1}{3} \, F^{(s)}(\mathbf{k},j)$$

Fake phonon modes $F^{(p)}(\mathbf{k}, j) = 0$

Filter

$$\mathcal{F}^{(s)}(\mathbf{k},j) = \left|\sum_{\mu} rac{\mathbf{e}(\mathbf{k},j;\mu)}{\sqrt{M_{\mu}}}
ight|^2$$

Lattice dynamics of cobalt-deficient CoO

Application of filter to stoichiometric CoO

Intensities of modes for CoO

experimental data close to branches with intensities > 30%

Lattice dynamics of cobalt-deficient CoO

Application of filter to nonstoichiometric CoO

- $igodoldsymbol{\circ}$ perturbed phonons with wavelength \sim size of region disturbed by vacancy
- missing Co ⇒ additional O vibrations (new modes)
- acoustic branches at small k not affected by vacancies
 long wavelength phonons insensitive to point defects

Lattice dynamics of cobalt-deficient CoO

Oxygens surrounding vacancies

Partial DOS

- vacancies affect the highest frequency LO modes
- no change in low-frequency acoustic region

Γ-point frequencies

frequency (THz)	CoO	Co _{0.97} O	Co _{0.94} O
ω_{TO}	10.25	9.81	9.61
ω_{LO}	15.73	15.87	16.08

Lattice dynamics of cobalt-deficient CoO

Mean-squared displacements vs T

Co and O at low T

- 5% larger MSD than in stoichiometric CoO
- negligible difference between Co_{0.97}O and Co_{0.94}O

Co and O above RT

	Со	0
Co _{0.97} O	13%	19%
Co _{0.94} O	22%	23%

Lattice dynamics of Fe-doped CoO

Dispersion curves. $U_{Fe} = U_{Co} = 7.1 \text{ eV}$

- Iocalized modes
- mass defect negligible
- change in on-site force constant at Fe site
- at Co site Φ = 10.013 (eV/Å²) const. vs U_{Fe}

Force constant at Fe site			
U _{Fe} (eV)	5.1	6.1	7.1
Φ (eV/Ų)	12.264	12.787	13.313

Dynamics of Fe impurity

splitting of ω_{TO}

modes corresponding to:

- oxygens vibrating around Co
 - ω_{TO} = 10.51 THz
 - const. vs U_{Fe}

oxygens vibrating around Fe

oxygens neighboring Fe U_{Fe} (eV) 5.1 6.1 7.1 ω_{TO} (THz) 9.67 9.68 9.72

Debye-Waller factors in Fe-doped CoO

- MSD_{Fe} < MSD_{Co} < MSD_O
- 5% increase in *MSD_{Fe}* with decreasing U_{Fe}

Low T (10 K)

- MSD_{Co} > MSD_{Fe} by 7% mass + force constant defect
- MSD_{Co}, MSD_O in Co(Fe)O are 4% higher than respective MSDs in CoO (const. vs U_{Fe})

Above RT ($U_{Fe} = 7.1 \text{ eV}$)

 MSD_{Fe} slope calc. = exp. Co(⁵⁷Fe)O

	Co(Fe)O	Co(⁵⁷ Fe)O	CoO	
Θ_D (K)	440	440	500	

Electronic structure of Co(Fe)O and Co(Fe,V)O

Valence and spin states of Fe in CoO and $CoO_{0.97}O$

Experiment - Mőssbauer spectroscopy

- 2 singlets @ RT
 - ferrous line Fe²⁺
 - ferric line Fe³⁺
 - vicinity of T_N = 293 K magnetically split component due to Fe²⁺
- T = 78 K magnetically split Fe^{2+} and Fe^{3+}

G. K. Wertheim, Phys. Rev. 124, 764 (1961)

Method

FP-(L)APW+lo (WIEN2k code) Full-potential(linearized) augmented plane-wave plus local orbitals \Downarrow

Isomer shift and EFG on Fe in Co(Fe)O and Co(Fe,V)O

Electronic structure of Co(Fe)O and Co(Fe,V)O

Charge and spin states

- different Fe-V complexes in CoO considered
- negligible changes vs U_{Fe}

•
$$\alpha = -0.291 \text{a.u.}^3 \text{mms}^-$$

• $\Omega = +0.17 \text{ b}$

U.D. Wdowik and K. Ruebenbauer, PRB 76, 155118 (2007)

Results

	Co(Fe)O	Co _{0.97} (Fe)O	Exp.[6]
M_{Co} (μ_{B})	2.74	2.74 Co ²⁺	
		3.13 Co ³⁺	
M_{Fe} (μ_B)	3.67	4.27	
IS (mm/s)	-1.031	-0.371	-1.1245(8) Fe ²⁺
			-0.37(5) Fe ³⁺
EFG (mm/s)	0.27	0.28	0
			0.3-0.4 mm/s linewidth
η	0.03	0.07	0

Electronic structure of Co(Fe)O and Co(Fe,V)O

Site preferences

Fe-V complex in CoO

Trivalent and divalent impurities in vacancy-defected CoO

magnetic impurities

- Fe^{3+} in 1^{st} n.s.
- Co³⁺ in 2nd n.s.
 exception: Fe³⁺ in 2nd n.s.

non-magnetic impurities

- 'small' trivalent cations in 2nd n.s.
- 'large' trivalent cations in 1st n.s.
- divalent cations in 2nd n.s.

Electronic structure of Co(Fe)O and Co(Fe,V)O

Density od states for Co(Fe)O and $Co_{0.97}$ (Fe)O

• Co³⁺ and Fe³⁺ states inside gap

Summary and conclusions

- DFT+U can predict correct ground states of CoO
- Trivalent Co are found in vacancy-defected CoO
- Filter allows to present phonon-dispersion curves to be more close to the dispersion relations of a real defected sample
- Point defects influence mainly optical phonon region. Long-wavelength acoustic phonons are practically not affected by defects, i.e., small concentration of defects does not disturb those crystal properties which are due to the low-frequency acoustic phonons
- Average MSDs of ions increase with increasing vacancy concentration (decreased intensity of scattered radiation)
- Differences in the vibrational dynamics of a dopant and host atoms arise from the dirrefence in their force constants
- Divalent Fe is found in the host CoO lattice undisturbed by cobalt vacancies
- Trivalent Fe is found in the host CoO lattice decorated with cobalt vacancies

Details can be found in PRB 75, 104306 (2007); PRB 77, 115110 (2008); PRB 78, 224114;

J.Phys.:Condens. Matter 21, 125601 (2009)