Struktura Mg₂Al₃, układu o gigantycznej komórce elementarnej

Janusz Wolny WFiIS AGH w Krakowie

Współpraca z siecią CMA <u>M. Duda</u> (doktorat), B. Kozakowski - struktura W. Sikora, A. Bartyzel – analiza symetryczna L. Pytlik, J. Adamowski, B. Łabno – stabilność klastrów K. Wierzbanowski + zespół – naprężenia Wstęp:

Jakie struktury mogą tworzyć stabilne konfiguracje dla izotropowych oddziaływań między atomami?

Struktury gęsto upakowane w D2 - warstwa heksagonalna

Struktury gęsto upakowane w D3

Możemy wyróżnić następujące sekwencje warstw:

• **AB** – struktura HCP,

na heksagonalną komórkę elementarną przypadają dwa węzły w pozycjach (0,0,0) oraz (2/3,1/3,1/2); c/a = 1.633, np. struktura Mg **Inwersja nie jest** elementem symetrii węzłów sieci.

•ABC – struktura FCC,

na kubiczną komórkę elementarną przypadają cztery węzły sieci: (0,0,0) oraz (0,0,1/2), np. struktura Cu **Inwersja jest** elementem symetrii każdego węzła sieci.

•**ABAC** – struktura DHCP,

na heksagonalną komórkę elementarną przypadają cztery węzły sieci. Dla dwóch węzłów lokalna symetria zawiera inwersję (są to tzw. węzły kubiczne) a dla pozostałych dwóch węzłów inwersja nie jest elementem symetrii lokalnej (są to tzw. węzły heksagonalne). Rozróżnienie symetrii lokalnej węzłów ma zasadnicze znaczenie w przypadku pojawienia się uporządkowania magnetycznego, co zostało zaobserwowane dla neodymu i prazeodymu.

•Bardziej skomplikowane sekwencje warstw (mogą być periodyczne lub aperiodyczne) – politypy.

Do opisu struktur z układu regularnego, heksagonalnego i romboedrycznego stosujemy współrzędne heksagonalne.

Przeliczniki:

$$a_{\rm h} = \frac{a_{\rm FCC}}{\sqrt{2}} \qquad c_{\rm h} = a_{\rm FCC}\sqrt{3} \qquad d_{\rm h} = \frac{a_{\rm FCC}}{\sqrt{3}} \qquad \frac{d_{\rm h}}{a_{\rm h}} = \sqrt{\frac{2}{3}}$$
$$a_{\rm h} = \sqrt{2}a_{\rm sc} \qquad c_{\rm h} = a_{\rm sc}\sqrt{3} \qquad d_{\rm h} = \frac{a_{\rm sc}}{\sqrt{3}} \qquad \frac{d_{\rm h}}{a_{\rm h}} = \sqrt{\frac{1}{6}}$$
$$a_{\rm h} = \sqrt{2}a_{\rm BCC} \qquad c_{\rm h} = a_{\rm BCC}\sqrt{3} \qquad d_{\rm h} = \frac{a_{\rm BCC}}{2\sqrt{3}} \qquad \frac{d_{\rm h}}{a_{\rm h}} = \sqrt{\frac{1}{24}}$$

Każda sieć regularna składa się z warstw heksagonalnych: ABC

(52%, może być stabilna, np. Polon)

(68%, jednak energetycznie porównywalna z FCC)

(74% - struktura gęstego upakowania) O stabilności struktury decyduje liczba kolejnych sąsiadów

Liczba kolejnych sąsiadów

Znormalizowany potencjał Lennarda-Jonesa: $V = 1/r^{12} - 2/r^6$

Sumaryczna energia układu modelowego

Dla upakowania sztywnych kul najbardziej stabilne są fazy FCC, HCP, DHCP itp.

Dla potencjału typu Lennarda-Jonesa stabilność faz FCC, HCP i BCC jest porównywalna.

W ekstremalnych warunkach (wysokie ciśnienie) stabilna może być faza SC (np. Polon). Taką możliwość stwarza mała liczba najbliższych sąsiadów (6) i dwa razy większa liczba kolejnych sąsiadów (12) dla n=6. W układach gęsto upakowanych, stosunek odległości między warstwami heksagonalnymi do stałej sieci heksagonalnej wynosi $d_{\rm h}/a_{\rm h} = (2/3)^{1/2} \approx 0.816$.

Sekwencja warstw **dla wszystkich sieci regularnych jest ABC**. Stosunek d_h/a_h wynosi odpowiednio: 0.816 dla FCC 0.408 dla SC 0.204 dla BCC;

Inna wartość stosunku prowadzi do sieci heksagonalnej (dowolna sekwencja warstw) lub romboedrycznej (sekwencja AB).

β - Mg₂Al₃

The Samson phase is one of the most complex intermetallic structures. The first description of the β -Mg₂Al₃ structure was provided by S. Samson in 1965. Its cubic elementary cell (Fd-3m, no. 227 space group) contains **1168 atoms** which are distributed over 1832 atomic positions. About 75% of atoms (879 to be exact) form the firm framework of the structure - 528 of them are Al and 351 are Mg. By "the framework" or "skeleton atoms" we understand a set of Samson's positions which are occupied by atoms with the probability of 100%. The remaining 289 (25%) atoms partially occupy 953 positions with the average occupation probability of 30%. They form clusters arranged in an elementary cell in a tetrahedral lattice.

The lattice constant of the Samson structure is gigantic: $a_c=2.8242(1)$ nm.

β -Mg₂Al₃; 1168 atoms; a_c =2.8242 nm

all the data used in this presentation come from Feuerbacher M. et al., Z. Krist. 222 (2007) 259

 β - Mg₂Al₃; SOF=1; 879 skeleton atoms (they form 75% of atoms)

β - Mg₂Al₃; SOF < 1; 289 atoms (25%)

β -Mg₂Al₃; skeleton atoms along [111]

β - Mg₂Al₃; along [111] – hexagonal lattice of domains

β - Mg₂Al₃; 6 domains-III (Al - skeleton atoms)

Projection of Al-skeleton atoms into base hexagonal plane

 β -Mg₂Al₃; single domain (Al + Mg along [111])

• eleven parallel and evenly distant hexagonal Al layers occupied by skeleton atoms

• two aperiodic clusters occupied by atoms with SOF<1

β - Mg₂Al₃; skeleton atoms of single domain (11 Al +10 Mg layers)

Projection of skeleton core atoms of domain-I for β -Mg₂Al₃ into xy plane

Only A, B or C positions of hexagonal lattice are occupied

Three domains of skeleton atoms of β -Mg₂Al₃ along the main diagonal

β - phase: r = 0.22

Z-component of β -Mg₂Al₃ skeleton-atoms decorating domain-I

 β - phase: • - Al, • - Mg 0.30 6 7 8 9 10 11 A C A B C A 2 3 12 13 18 19 20 21 22 14 15 16 17 B В А С r • 🗿 🌔 ∞ ٠ ٠ • • ٠ • • ٠ **••** O • Ó Ó ••• 00 ∞ • 🗿 🌔 ٠ ٠ ٠ • • ٠ \mathbf{O} outer part • • • **•** 0 • 0 • ٠ ٠ O ٠ ٠ ••• 0.25 Ó. • Ó ••• ٠ О • • 0 ٠ ٠ ٠ ••• **•** O ••• ٠ • 0 ••• 0 • ٠ O ٠ ٠ C ••• O ••• ٠ • • 0 **••** റ •••• O \mathbf{O} 0 O ٠ ٠ ٠ core ٠ ٠ 0.20 ٠ ٠ ٠ ٠ Ζ 0.0 0.5 1.0

Core: 11 Al + 10 Mg layers

The nominal composition is

 Mg_2Al_3

The real composition for layers is

 Mg_1Al_2

the magnesium atoms are in deficiency,

 the chemical balance is restored by Mg atoms scattered within outer parts of the structural domains

Position of Mg atoms in respect to 11 hexagonal Al-layers

Skeleton atoms of β -Mg₂Al₃: hexagonal layers and Friauf polihedra

Single domain of skeleton atoms of β -Mg₂Al₃: 11 hexagonal layers and Friauf polihedra

Clusters in β -Mg₂Al₃

Cluster 2 of β -Mg₂Al₃

Position of Mg atoms in respect to hexagonal Al-layers

- for periodic set of 11 hexagonal layers

- for aperiodic clusters

Very stable and unique configuration (Friauf polyhedron)

Corresponding composition: Mg₁Al₂

Plenty of room in a ring (size effect). Energetically less stable; at higher temperature stabilized by entropy

 Mg_1Al_1

β' - Mg₂Al₃

At a temperature of 214°C (for cooling rate of 5 C/min), the structure undergoes a phase transformation to the rhombohedral β '-Mg₂Al₃ (space group *R3m*, no. 160, which is a subgroup of the *Fd*-3*m* group - index 4) with a_r =1.9968(1) nm, c_r =4.89114(8) nm. Important relations between cubic and rhombohedral lattice constants

$$\frac{c_r}{a_c} = \sqrt{3}$$
 and

$$\frac{a_c}{a_r} = \sqrt{2}$$

The size of unit cell of β and β ' structures is exactly the same, the symmetry – not.

 $V_{\rm r} = 75\% \cdot V_{\rm c}$

from the experiment:

16889/22519 = 0.74999

 β - Mg_{38.5}Al_{61.5} annealed at 400 C [Z. Krist. 222 (2007) 259]

Projection of skeleton atoms of domain-I into xy plane for Mg₂Al₃

 Mg_2Al_3 ; domain-I (Al + Mg)

Position of atoms decorating domain-I in perpendicular direction to the hexagonal plane

Three domains of skeleton atoms of Mg₂Al₃ along the main diagonal

 Mg_2Al_3 ; domain-I (Al + Mg)

Superstructure of domains in xy plane

Conclusions

- 1. The most stable building element of Mg-Al compounds is a hexagonal ring of Al atoms ($a_0 = 0.273$ nm) filled with a couple of Mg atoms which are pushed out from the base plane (equivalent to the Friauf polyhedron) of a real local composition Mg₁Al₂.
- 2. Close packing of Al atoms brings to distance between hexagonal layers equal to $d_1 = 0.222 \text{ nm} = (2/3)^{1/2} a_0$. Additional: $22 \cdot d_1 = c_r$.
- 3. The core of each domain consists of a main chain of 11 hexagonal layers. It doesn't change during the β - β ' transition.
- 4. The unit cells of β and β ' phases of Mg₂Al₃ can be also regarded as the superstructures with the modulation vector equal to (3/22) (as the multi-*q* modulated structures).

Crossection through the β '-Mg₂Al₃ in xy plane: domain-III almost disappeared

β' - phase: r = 0.22

Crossection through the β' -Mg₂Al₃ in xy plane: near I-17'

Crossection through the β '-Mg₂Al₃ in xy plane: intergrowth of domains I and III

