

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Fizyki i Informatyki Stosowanej

Badanie materiałów polikrystalicznych w aspekcie optymalizacji ich własności

dr inż. Sebastian Wroński

Ośrodki współpracujące

Ecole Nationale Supérieure d'Arts et Métiers

Modyfikacja własności poprzez:

- Deformacje (walcowanie, ścinanie, rozciąganie itp.)
- Obróbka termiczna (wygrzewanie, rekrystalizacja itp.

opracowano według M.F. Ashby'ego

Metody badawcze

- Mikroskopia optyczna i elektronowa
- Dyfrakcja promieniowania X
- Dyfrakcja promieniowania neutronowego
- Wsteczne rozpraszanie elektronów (Electron Backscatter Diffraction – EBSD)
- Testy mechaniczne (rozciąganie, ściskanie, ścinanie, pomiar mikrotwardości itp.)

Dyfrakcja promieniowania X

Dyfrakcja promieniowania neutronowego

A WORLD CENTRE FOR CONDENSED MATTER SCIENCE WITH NEUTRONS & MUONS

EBSD (Electron Backscatter Diffraction)

EBSD (Electron Backscatter Diffraction)

Schematic Representation of Sample Normal COM

EBSD (Electron Backscatter Diffraction)

Cambridge S360 Zeiss Supra 40VP

Odkształcana i rekrystalizowana miedź

Modelowanie

Deformacji

- w skali makro przy użyciu metody elementów skończonych (MES)
- w skali krystalograficznej używając modelu odkształcenia polikryształu (model LW, self-consistent)
- połączone modele makro i krystalograficzny

Rekrystalizacji

- Model oparty na koncepcji zorientowanego wzrostu zarodków
- Modele oparte na metoda Monte-Carlo
- Model rekrystalizacji typu Vertex

Modelowanie w skali makro

Podział kontinnum na elementy

Wprowadzenie reguł opisujących przemieszczenie węzłów oraz warunków brzegowych

Linear Force-Displacement

Nonlinear Force-Displacement

Modelowanie w skali krystalograficznej

Mechanizmy odkształcenia plastycznego

Poślizg krystalograficzny

Bliźniakowanie (Twinning)

Modelowanie w skali krystalograficznej

Model deformacji plastycznej

$$\Sigma_{ij}, E_{ij} \Leftrightarrow \sigma_{ij}, \mathcal{E}_{ij}$$
$$\overset{\bullet}{\sigma}_{ij} = \overset{\bullet}{\Sigma}_{ij} + L_{ijkl}^{*} (\overset{\bullet}{E}_{kl}{}^{pl} - \overset{\bullet}{\varepsilon}_{kl}{}^{pl})$$

Sachs model

 $L^* = 0$ - brak oddziaływań między ziarnami – jednorodny rozkład naprężeń $\sigma_{ij} = \Sigma_{ij}$

Taylor model

 $L^{*} \rightarrow \infty \;$ - jednorodna deformacja ziaren w całej próbce

$$\boldsymbol{\varepsilon}_{ij}^{pl} = E_{ij}^{pl}$$

LW model (with compromise interaction)

 $L^* = \alpha \mu$ - oddziaływanie bliskie rzeczywistemu (μ moduł ścinana α współczynnik akomodacji elasto-plastycznej)

Modelowanie w skali krystalograficznej

Model samouzgodniony (self-consistent model)

W części elastycznej:

$$\Sigma_{ij} = C_{ijkl} E_{kl}$$
 and $\sigma_{ij}^{I} = c_{ijkl}^{I} \varepsilon_{kl}^{I}$

W części plastycznej:

$$\Delta \Sigma_{ij} = L_{ijkl} \Delta E_{kl} \quad and \quad \Delta \sigma_{ij}^{I} = l_{ijkl}^{I} \Delta \varepsilon_{kl}^{I}$$

Tensor koncentracji :

$$\overset{\bullet}{\varepsilon}_{ij}^{I} = A_{ijkl}^{I} \overset{\bullet}{E}_{kl} \qquad \overset{\bullet}{\sigma}_{ij}^{I} = B_{ijkl}^{I} \overset{\bullet}{\Sigma}_{kl}$$

Połączenie modeli makro i krystalograficznych

Modelowanie rekrystalizacji

Etapy rekrystalizacji :

- Zdrowienie
- Rekrystalizacja pierwotna
- Rekrystalizacja wtórna
- Rekrystalizacja trzecio-rzędowa

Modele rekrystalizacji

- Model oparty na koncepcji zorientowanego wzrostu zarodków – model rekrystalizacji statystycznej
- Modele oparte na metoda Monte-Carlo
- Model rekrystalizacji typu Vertex

Rozkład sił działający na każdy vertex

Rekonfiguracji dyslokacji

Ziarno o orientacji g1 zanika na rzecz rozrastających się ziaren g2g7

Vertexowa reprezentacja mikrostruktury

Stal dwufazowa

Damage in ferritic phase after elast-oplastic deformation (SEM).

Austenite

Stal dwufazowa

Orientation map (alpha and gamma)

IQ map (alpha and gamma)

Stal dwufazowa

$$< d(\psi, \varphi) >_{hkl} = \left[F_{ij}(R_{ij}, \psi, \varphi) \sigma_{ij}^{I} + < \varepsilon_{33}'(\psi, \varphi) >_{hkl}^{NP} \right] d_{hkl}^{0} + d_{hkl}^{0}$$

Damage in ferritic phase after elast-oplastic deformation (SEM).

Optymalizacja procesów przemysłowych

Walcowanie asymetryczne

Walcowanie asymetryczne

Zalety

- Mniejsza siła nacisku
- Mniejszy moment siły
- Jednorodna tekstura
 Wady
- Wygięcie próbki

Symulacja procesu walcowania

Symulacja procesu walcowania

Rozkład naprężeń

Walcowanie asymetryczne

MES + krystalograficzny model deformacji

Badanie efektów starzenia

Wykład obieralny dla studentów WFilS

Wprowadzenie do metody elementów skończonych

czym jest MES, idea podziału ośrodka na elementy, przykład prostej kratownicy – budowa macierzy sztywności, agregacja, wprowadzanie warunków brzegowych

Metody aproksymacyjnego rozwiązywania równań różniczkowych

Metoda Ritza Metoda Rayleigha – Ritza Metody ważonych rezidów (Metoda kolokacyjna, Metoda najmniejszych kwadratów, Metoda Galerkina)

Typ elementów skończonych i ich własności

Elementy 1D, 2D, 3D, pierwszego i drugiego rzędu.

MES w zagadnieniach dynamicznych

Błędy w rozwiązaniach MES

Ćwiczenia praktyczne z zastosowaniem systemu ABAQUS

Ćwiczenie 1 – statyczna analiza prostej kratownicy 2D

Ćwiczenie 2 – statyczna analiza wspornika 2D

Ćwiczenie 3 – analiza materiałów anizotropowych 3D

Experimental

Ćwiczenie 4 – analiza dynamiczna (wyznaczanie częstotliwości drgań własnych) Model Model Model

Mode	Natural
	Frequency
	[MHz]
1	9.407
2	9.557
3	9.568
4	10.027
5	10.033

Ćwiczenie 5 – analiza walcowania asymetrycznego 3D

Ćwiczenie 6 – analiza wydzielania ciepła pod wpływem przepływu prądu

