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Maldacena '97

» The AdS/CFT correspondence postulates the equivalence of these

two theories!

> It is extremely surprising as the two theories are apparently

completely different

> In this context string theory does not introduce any new additional
physics but is a dual description of an ordinary (supersymmmetric)

gauge theory

> In particular the AdS/CFT correspondence (and its utility) is
completely independent whether superstring theory is indeed a
description of our physical world (in the sense of a grand unified

theory) or not...
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D3 branes which are characterized by the property that strings can
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» Massless excitations of strings attached to a D3-brane correspond

exactly to fields in ' = 4 Super-Yang-Mills gauge theory

» Apart from these excitations there exist an infinite tower of
additional massive fields with masses m? = n/a’

» Now take the above configuration and take the limit o’ — 0
Then these additional fields will decouple from the dynamics!

» We will thus remain with 4-dimensional gauge theory
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strong coupling (semi-)classical strings
nonperturbative regime and/or (super)gravity
very difficult ‘easy’
weak coupling highly quantum regime
‘easy’ very difficult

» Provides effective calculational techniques for studying gauge theory
dynamics in the nonperturbative regime

» Unexpected close ties between gauge theory and General Relativity

» Apart from any practical utility, the equivalence of two such
completely different theories is fascinating theoretically

» We can look at the AdS/CFT correspondence as a highly nontrivial
reformulation of gauge theory dynamics in terms of new
(‘composite’) degrees of freedom
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Degrees of freedom on the string side of the correspondence:
1. massless sector: (super)gravity fields in AdSs x S°
2. an infinite tower of massive fields (massive closed string excitations)

> In the nonperturbative gauge theory regime of large coupling, these
massive fields become very heavy and effectively decouple from the
dynamics

» Consequently the dual description of nonperturbative dynamics
dramatically simplifies and reduces to just (super)gravity!

> In case of small gauge coupling we cannot neglect the massive string
states...

Advantage: We can study the most difficult nonperturbative
regime of gauge theory

Disadvantage: It is very difficult to prove the AdS/CFT
correspondence... no proof so far...
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In the planar limit
A= g2 N, fixed as No — oo

for arbitrary gauge theory coupling we have very good control of the
spectrum of massive string states (beyond supergravity) using techinques
of integrability

The spectrum:
= Anomalous dimensions in the planar limit
= energy levels of a single string in AdSs x S°
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e Full agreement with 4-5 loop gauge theory perturbative computations
e Most complete solution: Quantum Spectral Curve
Gromov, Kazakov, Leurent, Volin
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Even with all this knowledge there are still open problems at
large N,

» The dual description of thermal plasma (A = 4 SYM at nonzero
temperature) at large N, strong coupling is given by a planar black
hole solution

» What is the dual description of thermal plasma still at large N, but

for A — 07
> here the massive string excitations are as important as supergravity
modes

» what is the bulk action governing all these states - even at the
classical level?
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The case of finite N is even more mysterious...

» We expect quantum gravity effects
» What workable theoretical framework could be used?

> covariant closed string field theory?77?
» something else?
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There exist potentially simpler versions of holography in lower
number of dimensions...
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Very nontrivial check of 3-point correlation functions Giombi, Yin
Very intriguing — first time no strings directly involved
The boundary field theory is completely under control

On the bulk side the situation is less clear — action for Vasiliev
gravity is not really known (although some proposals exist)

In particular unfortunately it is not known how to quantize Vasiliev
gravity...
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— a family of coset CFT's with Wy symmetry

» (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions
with a highly nontrivial higher spin algebra

» The duality involves, however, also a bulk scalar field interacting
with the higher spin sector

» Very challenging to study at finite N
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It would be very interesting to construct a holographic model
where the bulk action would be completely known...
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Goal:
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> The dual holographic theory should be defined on a higher
dimensional manifold M, having ¥ as a boundary.
> We should have equality of partition functions

Zboundary(z) = Zbulk(M)

» E.g this would provide a bulk interpretation of the thermodynamics
of the theory...

Typically for AdS/CFT we want much more...
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Requirements for a holographic description

1l ldentification of a gravitational subsector

> The boundary theory is defined on a manifold ¥ with fixed metric

> There should be a bulk field associated with the energy-momentum
tensor and the boundary metric on

» This would define a gravitational subsector in the bulk theory

» Standard example: Fefferman-Graham expansion of the bulk metric

ds

2 G (xP, z)dx"dx" + dz?
= 3 +
z
where
guv(x”,2) = g} (x") + g (x") 7 + gl (") 2 + ...
> For higher spin gravity the whole picture is more complex...

> But in this way one can identify a gravitational subsector of the
bulk theory

19 / 30
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1,

» Consider the bulk spacetime to be of the form
M ={(t,z): z >0}
» Since in the 2D massless boson case we have dual abelian

Chern-Simons, here we expect to have a 2D abelian BF topological
theory

SW:/BM:/Bﬁm—@mmw
M

> As the action vanishes on the constraint manifold dA = 0, we need
to impose appropriate boundary conditions and boundary action
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» We will impose the following boundary conditions for the BF theory

B = 7At |z:0 At =0 |z—>oo

» Again in analogy to WZW/CS, we have to supplant the BF action
with a boundary term so that the variation at the boundary vanishes

1
Shui = SeF + 5/ B*dt
{z=0}

> The Lagrange multiplier field B imposes the constraint dA = 0,
hence we may set

Az = —8z¢ Af = —8t¢

» The boundary values of ®(t, z)|,—o will be identified with g(t) hence
the partition functions coincide as on the constraint surface

1 1 1
Stk =0+ 5/ B%dt = §/ A2dt = /dt Ec']2
{z=0} {z=0}
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/dt %q2+/dtj(t)q(t)

» We would like to introduce a new bulk field associated with the
source j(t)

» In terms of the BF theory gauge field, the particle position g(t) can
be understood essentially as a Wilson line

/Oo Aydz =— /Oo 0,P(t,z) = ®(t,0) — P(t,00) — P(t,0)
z z=0

q(t)=/LA

where the line L is attached to the boundary at time t and goes to
infinity in the bulk.

» So we have
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Step Il — bulk fields for sources

v

In order to construct a bulk action which reduces to
[ ettt

we will need two ingredients

We will introduce another two-dimensional abelian BF theory

/Cda

as we need a bulk field going over to j(t) at the boundary...
We use the global 1-form dt (this will be modified later)

Introduce a constraint term in the action
Do A dt

which ensures that the 1-form « only has temporal component
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Step Il — bulk fields for sources

> Now the flatness condition da: = 0 ensures « = j(t)dt, so we can
generate the wanted term from a simple bulk interaction between o
and A:

/M ANA = /M J(6)dEA(Ardt+A, dz) = / i) /0 " AL dedt = / i(t)q(t)dt

» At this stage the overall bulk action is

1
5é’u/k:/ (BdA+Cda+a/\A+Da/\dt)+f/ B2t
M 2 oM

» The appearance of an explicit dt is not very pleasing — but we will
get rid of it shortly
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QFT on a 1-dimensional worldline, one can introduce a fixed
1-dimensional metric gy+(t) and write the action as

1 tt 2_1/1-2
2/\/§g (0:q) =5/ 9

and the einbein e = e(t) is a given function of time...

» We would like to introduce a natural bulk field which goes over to
the einbein at the boundary.

» At the same time we will replace the 1-form dt (which is necessarily
closed)

» Introduce a third abelian BF pair

/Edn

> The closed 1-form n will play the role of dft.
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Step Il — the “gravity” subsector

» We will modify the boundary conditions
At + 'f]tB = 0|z:0

and fix the boundary value of 7,
» Accordingly we need to modify the additional boundary action
1 1
4 /‘ B%dt — = B%n
2 Jiz—0 2 Jom

(this works as dn; = 0|,—0)

» Now the resulting action will take the form

1 1 /1 1 /1
- B? :f/—ﬁm:f/—j
2 /6/\// ! 2) e " 2) ne 7
> We see that we have to identify the boundary value of 7; with the

einbein e(t)
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Step Il — the “gravity” subsector

» The final bulk action at this stage is

1
Sg’u’,k:/ (BdA+Cda+Edn+aAA+DaAn)+§/ B%p
M oM

with the boundary conditions

At + ntB = 0‘2:0 Qi :j(t)|z:0 Nt = e(t)|z:0

» We are led to identify E, n as the “gravitational” subsector of the
bulk theory
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action involving only the bulk fields corresponding to sources for
g(t) and the energy-momentum tensor Ty

eiSiunlC.D,Eam] _ /DB DA e/ShunB.A,C.D.E o]

» Unfortunately this seems to be quite nonlocal...

» One can speculate whether this is a generic situation and a local
holographic bulk action in this sense occurs only in special
circumstances??? (like large N and/or strong coupling?)
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