Towards holography for quantum mechanics a toy model for AdS/CFT

Romuald A. Janik

Jagiellonian University Kraków

RJ 1805.03606

Motivation

The original AdS/CFT correspondence Questions on holography

Requirements for a holographic description
Partition function
Correlation functions
The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Motivation

The original AdS/CFT correspondence Questions on holography

Requirements for a holographic description

Partition function Correlation functions The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Motivation

The original AdS/CFT correspondence Questions on holography

Requirements for a holographic description

Partition function Correlation functions The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Motivation

The original AdS/CFT correspondence Questions on holography

Requirements for a holographic description

Partition function Correlation functions The "gravity" subsector

Holographic description for a quantum-mechanical free particle

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Superstrings on a curved 10-dimensional spacetime $AdS_5 \times S^5$

Maldacena '97

- ► The AdS/CFT correspondence postulates the equivalence of these two theories!
- It is extremely surprising as the two theories are apparently completely different
- ▶ In this context string theory does **not** introduce any new **additional** physics but is a dual description of an ordinary (supersymmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Superstrings on a curved 10-dimensional spacetime $AdS_5 \times S^5$

Maldacena '97

► The AdS/CFT correspondence postulates the equivalence of these two theories!

 \equiv

- ▶ It is extremely surprising as the two theories are apparently completely different
- In this context string theory does not introduce any new additional physics but is a dual description of an ordinary (supersymmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Maldacena '97

- ► The AdS/CFT correspondence postulates the equivalence of these two theories!
- It is extremely surprising as the two theories are apparently completely different
- ▶ In this context string theory does not introduce any new additional physics but is a dual description of an ordinary (supersymmmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Superstrings on a curved 10-dimensional spacetime $AdS_5 \times S^5$

Maldacena '97

► The AdS/CFT correspondence postulates the equivalence of these two theories!

 \equiv

- It is extremely surprising as the two theories are apparently completely different
- In this context string theory does not introduce any new additional physics but is a dual description of an ordinary (supersymmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Maldacena '97

- ► The AdS/CFT correspondence postulates the equivalence of these two theories!
- It is extremely surprising as the two theories are apparently completely different
- ▶ In this context string theory does **not** introduce any new **additional** physics but is a dual description of an ordinary (supersymmmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

Supersymmetric gauge theory in ordinary 4-dimensional Minkowski spacetime ($\mathcal{N}=4$ Super Yang-Mills)

Maldacena '97

- The AdS/CFT correspondence postulates the equivalence of these two theories!
- It is extremely surprising as the two theories are apparently completely different
- ▶ In this context string theory does **not** introduce any new **additional** physics but is a dual description of an ordinary (supersymmmetric) gauge theory
- ▶ In particular the AdS/CFT correspondence (and its utility) is completely independent whether superstring theory is indeed a description of our physical world (in the sense of a grand unified theory) or not...

What are the origins of the AdS/CFT correspondence?

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ▶ Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics!
- ▶ We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ▶ Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$. Then these additional fields will decouple from the dynamics.
- ▶ We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ▶ Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics!
- We will thus remain with 4-dimensional gauge theory N = 4 SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ▶ Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics
- We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$. Then these additional fields will decouple from the dynamics.
- ▶ We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ► Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics
- ▶ We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ► Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics!
- We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ **SYM** (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- ► Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics!
- ▶ We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- Massless excitations of strings attached to a D3-brane correspond exactly to fields in $\mathcal{N}=4$ Super-Yang-Mills gauge theory
- Apart from these excitations there exist an infinite tower of additional massive fields with masses $m^2 = n/\alpha'$
- Now take the above configuration and take the limit $\alpha' \to 0$ Then these additional fields will decouple from the dynamics!
- We will thus remain with 4-dimensional gauge theory $\mathcal{N}=4$ SYM (and decoupled 10D supergravity)

- ▶ In string theory, **D3 branes** have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- \blacktriangleright We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Sup

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- ightharpoonup We take the same limit as before lpha'
 ightarrow 0
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- lacktriangle We take the same limit as before lpha'
 ightarrow 0
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- \blacktriangleright We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- lacktriangle We take the same limit as before lpha'
 ightarrow 0
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

- In string theory, D3 branes have a definite (calculable) mass and 'charge'
- ▶ D3 branes thus are sources for supergravity fields...

- ▶ One obtains a concrete explicit geometry which is a solution of supergravity Einstein's equations (gravity+appropriate matter fields)
- We take the same limit as before $\alpha' \to 0$
- ▶ One obtains the $AdS_5 \times S^5$ geometry! (and 10D Minkowski)
- Since we looked at the same system from two points of view, the two descriptions should be equivalent. Thus one arrives at the AdS/CFT correspondence:

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy'

- ▶ Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- ▶ Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy'

- ▶ Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- ▶ We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy'

- ► Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- ► We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy'

- ► Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- ▶ We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy'

- ► Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- ▶ We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

The AdS/CFT correspondence

$$\mathcal{N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$ spacetime

strong coupling nonperturbative regime very difficult weak coupling 'easy' (semi-)classical strings and/or (super)gravity 'easy' highly quantum regime very difficult

- ► Provides effective calculational techniques for studying gauge theory dynamics in the nonperturbative regime
- ▶ Unexpected close ties between gauge theory and General Relativity
- Apart from any practical utility, the equivalence of two such completely different theories is fascinating theoretically
- We can look at the AdS/CFT correspondence as a highly nontrivial reformulation of gauge theory dynamics in terms of new ('composite') degrees of freedom

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- In case of small gauge coupling we cannot neglect the massive string states...

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$${\cal N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states.

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$${\cal N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$${\cal N}=$$
 4 Super Yang-Mills \equiv Superstrings on $AdS_5 imes S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- ▶ In case of small gauge coupling we cannot neglect the massive string states

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - **1.** massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- In case of small gauge coupling we cannot neglect the massive string states...

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- ► Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- In case of small gauge coupling we cannot neglect the massive string states...

Advantage: We can study the most difficult nonperturbative regime of gauge theory

$$\mathcal{N}=4$$
 Super Yang-Mills \equiv Superstrings on $AdS_5 \times S^5$

- ▶ Degrees of freedom on the string side of the correspondence:
 - 1. massless sector: (super)gravity fields in $AdS_5 \times S^5$
 - 2. an infinite tower of massive fields (massive closed string excitations)
- ▶ In the nonperturbative gauge theory regime of large coupling, these massive fields become very heavy and effectively decouple from the dynamics
- Consequently the dual description of nonperturbative dynamics dramatically simplifies and reduces to just (super)gravity!
- In case of small gauge coupling we cannot neglect the massive string states...

Advantage: We can study the most difficult nonperturbative regime of gauge theory

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- ≡ Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- ≡ Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- ≡ Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- ≡ Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

In the planar limit

$$\lambda \equiv g_{YM}^2 N_c$$
 fixed as $N_c \to \infty$

for *arbitrary* gauge theory coupling we have very good control of the spectrum of massive string states (beyond supergravity) using techinques of integrability

The spectrum:

- ≡ Anomalous dimensions in the planar limit
- \equiv energy levels of a single string in $AdS_5 \times S^5$

- Full agreement with 4-5 loop gauge theory perturbative computations
- Most complete solution: Quantum Spectral Curve

- ▶ The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_c , strong coupling is given by a planar black hole solution
- ▶ What is the dual description of thermal plasma still at large N_c but for $\lambda \to 0$?
 - here the massive string excitations are as important as supergravity modes.
 - what is the bulk action governing all these states even at the classical level?

- ▶ The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_c , strong coupling is given by a planar black hole solution
- ▶ What is the dual description of thermal plasma still at large N_c but for $\lambda \to 0$?
 - here the massive string excitations are as important as supergravity modes
 - what is the bulk action governing all these states even at the classical level?

- ▶ The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_c , strong coupling is given by a planar black hole solution
- ▶ What is the dual description of thermal plasma still at large N_c but for $\lambda \to 0$?
 - here the massive string excitations are as important as supergravity modes
 - what is the bulk action governing all these states even at the classical level?

- ▶ The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_c , strong coupling is given by a planar black hole solution
- ▶ What is the dual description of thermal plasma still at large N_c but for $\lambda \to 0$?
 - here the massive string excitations are as important as supergravity modes
 - what is the bulk action governing all these states even at the classical level?

- ▶ The dual description of thermal plasma ($\mathcal{N}=4$ SYM at nonzero temperature) at large N_c , strong coupling is given by a planar black hole solution
- ▶ What is the dual description of thermal plasma still at large N_c but for $\lambda \to 0$?
 - here the massive string excitations are as important as supergravity modes
 - what is the bulk action governing all these states even at the classical level?

- We expect quantum gravity effects
- ▶ What workable theoretical framework could be used?
 - covariant closed string field theory????
 - something else?

- ▶ We expect quantum gravity effects
- ▶ What workable theoretical framework could be used?
 - covariant closed string field theory????
 - something else?

- ▶ We expect quantum gravity effects
- ▶ What workable theoretical framework could be used?
 - covariant closed string field theory????
 - something else?

- ▶ We expect quantum gravity effects
- ▶ What workable theoretical framework could be used?
 - covariant closed string field theory???
 - something else?

- ▶ We expect quantum gravity effects
- ▶ What workable theoretical framework could be used?
 - covariant closed string field theory???
 - something else?

There exist potentially simpler versions of holography in lower number of dimensions...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- Very nontrivial check of 3-point correlation functions
 Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under contro
- ➤ On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- ➤ On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- ➤ On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- ➤ On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- ► On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

O(N) - higher spin duality

Klebanov, Polyakov

- ► The singlet sector of free scalar O(N) vector model in 3D dual to 4D Vasiliev gravity
- ▶ Very nontrivial check of 3-point correlation functions Giombi, Yin
- Very intriguing first time no strings directly involved
- ▶ The boundary field theory is completely under control
- ► On the bulk side the situation is less clear action for Vasiliev gravity is not really known (although some proposals exist)
- ▶ In particular unfortunately it is not known how to quantize Vasiliev gravity...

- ▶ Beautiful story in 2D...
 a family of coset CFT's with W_N symmetry
- ▶ (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- ► The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- ► Very challenging to study at finite *N*

- ▶ Beautiful story in 2D...
 - a family of coset CFT's with W_N symmetry
- ▶ (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- ► The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- ► Very challenging to study at finite *N*

- ▶ Beautiful story in 2D...
 - a family of coset CFT's with W_N symmetry
- ► (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- ► The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- ► Very challenging to study at finite *N*

- ► Beautiful story in 2D...
 - a family of coset CFT's with W_N symmetry
- (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- ► The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- ► Very challenging to study at finite *N*

- Beautiful story in 2D...
 a family of coset CFT's with W_N symmetry
- ► (Pure) 3D Vasiliev gravity is given by a pair of Chern-Simons actions with a highly nontrivial higher spin algebra
- ► The duality involves, however, also a bulk scalar field interacting with the higher spin sector
- ▶ Very challenging to study at finite *N*

It would be very interesting to construct a holographic model where the bulk action would be completely known...

 Attempt a holographic description for the simplest possible theory that one could think of

 Attempt a holographic description for the simplest possible theory that one could think of

 Attempt a holographic description for the simplest possible theory that one could think of

► Attempt a holographic description for the simplest possible theory that one could think of...

► Attempt a holographic description for the simplest possible theory that one could think of...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

► E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

- I Equality of partition functions
 - The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
 - ► We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

► E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- ► We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

► E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- ▶ We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

► E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Suppose that the field theory is defined on some fixed \emph{d} -dimensional spacetime geometry Σ

I Equality of partition functions

- The dual holographic theory should be defined on a higher dimensional manifold M, having Σ as a boundary.
- ▶ We should have equality of partition functions

$$Z_{boundary}(\Sigma) = Z_{bulk}(M)$$

► E.g this would provide a bulk interpretation of the thermodynamics of the theory...

Ila Prescription for correlation functions

 We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- ► Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bndry}(\phi)+i\int_{\Sigma}j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk} \left(\Phi_{O}(z,x^{\mu}) \underset{z\to 0}{\longrightarrow} j(x^{\mu})\right)$$

Ila Prescription for correlation functions

 We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- ► Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bndry}(\phi)+i\int_{\Sigma}j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk} \left(\Phi_{O}(z,x^{\mu}) \underset{z\to 0}{\longrightarrow} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

 We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bindry}(\phi)+i\int_{\Sigma}j(x^{\mu})\mathcal{O}(x^{\mu})d^{d}x} = Z_{bulk}\left(\Phi_{\mathcal{O}}(z,x^{\mu}) \underset{z\to 0}{\longrightarrow} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bindity}(\phi)+i\int_{\Sigma} j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bindity}\left(\Phi_{O}(z,x^{\mu}) \xrightarrow[z\to 0]{} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bndry}(\phi)+i\int_{\Sigma} j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk} \left(\Phi_{O}(z, x^{\mu}) \underset{z \to 0}{\longrightarrow} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bndry}(\phi)+i\int_{\Sigma}j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk} \left(\Phi_{O}(z,x^{\mu}) \underset{z\to 0}{\longrightarrow} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ \mathrm{e}^{iS_{bndry}(\phi)+i\int_{\Sigma}j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk} \left(\Phi_{O}(z,x^{\mu}) \underset{z\to 0}{\longrightarrow} j(x^{\mu})\right)$$

IIa Prescription for correlation functions

We should be able to compute correlation functions for operators in the boundary theory from the bulk theory

IIb The generating function for correlation functions

- Local observables/operators in the boundary theory should be associated to fields in the bulk theory
- Boundary values of the bulk fields (up to a possible rescaling by z[#]) should give sources for the corresponding operator in the generating function of correlators

$$\int D\phi \ e^{iS_{bndry}(\phi)+i\int_{\Sigma}j(x^{\mu})O(x^{\mu})d^{d}x} = Z_{bulk}\left(\Phi_{O}(z,x^{\mu})\underset{z\to 0}{\longrightarrow}j(x^{\mu})\right)$$

III Identification of a gravitational subsector

- The boundary theory is defined on a manifold Σ with fixed metric
- ▶ There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ► For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ightharpoonup The boundary theory is defined on a manifold Σ with fixed metric
- ▶ There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ▶ For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ▶ This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho}) z^2 + g_{\mu\nu}^{(4)}(x^{\rho}) z^4 + \dots$$

- ► For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- There should be a bulk field associated with the energy-momentum tensor and the boundary metric on ∑
- ▶ This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ▶ For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ▶ This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ► For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2=rac{g_{\mu
u}(x^
ho,z)dx^\mu dx^
u+dz^2}{z^2}+\ldots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^{2} + g_{\mu\nu}^{(4)}(x^{\rho})z^{4} + \dots$$

- ▶ For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2 = \frac{g_{\mu\nu}(x^\rho, z)dx^\mu dx^\nu + dz^2}{z^2} + \dots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ► For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho},z)dx^{\mu}dx^{\nu} + dz^2}{z^2} + \dots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ► For higher spin gravity the whole picture is more complex..
- But in this way one can identify a gravitational subsector of the bulk theory

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho},z)dx^{\mu}dx^{\nu} + dz^2}{z^2} + \dots$$

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ▶ For higher spin gravity the whole picture is more complex...
- But in this way one can identify a gravitational subsector of the bulk theory

Requirements for a holographic description

III Identification of a gravitational subsector

- ▶ The boundary theory is defined on a manifold Σ with fixed metric
- ightharpoonup There should be a bulk field associated with the energy-momentum tensor and the boundary metric on Σ
- ► This would define a gravitational subsector in the bulk theory
- ▶ Standard example: Fefferman-Graham expansion of the bulk metric

$$ds^2 = \frac{g_{\mu\nu}(x^{\rho},z)dx^{\mu}dx^{\nu} + dz^2}{z^2} + \dots$$

where

$$g_{\mu\nu}(x^{\rho},z) = g_{\mu\nu}^{(0)}(x^{\rho}) + g_{\mu\nu}^{(2)}(x^{\rho})z^2 + g_{\mu\nu}^{(4)}(x^{\rho})z^4 + \dots$$

- ▶ For higher spin gravity the whole picture is more complex...
- But in this way one can identify a gravitational subsector of the bulk theory

- ▶ Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

- ▶ Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- ► Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- ► Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- ► Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- ► Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

- Direct (but much simpler) analog of the massless free boson (abelian WZW/CS)
- ► Extremely simplified system no spatial direction
- No large N, or coupling expect the dual description to be quantum

$$S = \int dt \; \frac{1}{2} \dot{q}^2$$

Consider the bulk spacetime to be of the form

$$M = \{(t, z) : z \ge 0\}$$

Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$S_{BF}=\int_{M}B\ dA=\int B\left(\partial_{t}A_{z}-\partial_{z}A_{t}
ight)\!dt\!dz$$

$$S = \int dt \; \frac{1}{2} \dot{q}^2$$

Consider the bulk spacetime to be of the form

$$M = \{(t, z) : z \ge 0\}$$

Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$S_{BF}=\int_{M}B\ dA=\int B\left(\partial_{t}A_{z}-\partial_{z}A_{t}
ight)dtdz$$

$$S = \int dt \; \frac{1}{2} \dot{q}^2$$

Consider the bulk spacetime to be of the form

$$M = \{(t, z) : z \ge 0\}$$

► Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$S_{BF} = \int_{M} B \, dA = \int B \left(\partial_{t} A_{z} - \partial_{z} A_{t} \right) dt dz$$

$$S = \int dt \; \frac{1}{2} \dot{q}^2$$

Consider the bulk spacetime to be of the form

$$M = \{(t, z) : z \ge 0\}$$

 Since in the 2D massless boson case we have dual abelian Chern-Simons, here we expect to have a 2D abelian BF topological theory

$$S_{BF} = \int_{M} B \, dA = \int B \left(\partial_{t} A_{z} - \partial_{z} A_{t} \right) dt dz$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0} \qquad \qquad A_t = 0 \mid_{z \to \infty}$$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi \qquad \qquad A_t = -\partial_t \Phi$$

$$S_{bulk}^{I}=0+rac{1}{2}\int_{\{z=0\}}B^{2}dt=rac{1}{2}\int_{\{z=0\}}A_{t}^{2}dt=\int dt\;rac{1}{2}\dot{q}^{2}dt$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0} \qquad A_t = 0 \mid_{z \to \infty}$$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi$$
 $A_t = -\partial_t \Phi$

$$S_{bulk}^{I} = 0 + \frac{1}{2} \int_{\{z=0\}} B^2 dt = \frac{1}{2} \int_{\{z=0\}} A_t^2 dt = \int dt \, \frac{1}{2} \dot{q}^2 dt$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0}$$
 $A_t = 0 \mid_{z \to \infty}$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi$$
 $A_t = -\partial_t \Phi$

$$S_{bulk}^{I}=0+rac{1}{2}\int_{\{z=0\}}B^{2}dt=rac{1}{2}\int_{\{z=0\}}A_{t}^{2}dt=\int dt\;rac{1}{2}\dot{q}^{2}dt$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0} \qquad A_t = 0 \mid_{z \to \infty}$$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi$$
 $A_t = -\partial_t \Phi$

$$S_{bulk}^{I}=0+rac{1}{2}\int_{\{z=0\}}B^{2}dt=rac{1}{2}\int_{\{z=0\}}A_{t}^{2}dt=\int dt\;rac{1}{2}\dot{q}^{2}dt$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0} \qquad A_t = 0 \mid_{z \to \infty}$$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi$$
 $A_t = -\partial_t \Phi$

$$S_{bulk}^{I} = 0 + \frac{1}{2} \int_{\{z=0\}} B^2 dt = \frac{1}{2} \int_{\{z=0\}} A_t^2 dt = \int dt \, \frac{1}{2} \dot{q}^2 dt$$

▶ We will impose the following boundary conditions for the BF theory

$$B = -A_t \mid_{z=0} \qquad A_t = 0 \mid_{z \to \infty}$$

▶ Again in analogy to WZW/CS, we have to supplant the BF action with a boundary term so that the variation at the boundary vanishes

$$S'_{bulk} = S_{BF} + \frac{1}{2} \int_{\{z=0\}} B^2 dt$$

▶ The Lagrange multiplier field B imposes the constraint dA = 0, hence we may set

$$A_z = -\partial_z \Phi$$
 $A_t = -\partial_t \Phi$

$$S_{bulk}^I = 0 + \frac{1}{2} \int_{\{z=0\}} B^2 dt = \frac{1}{2} \int_{\{z=0\}} A_t^2 dt = \int dt \, \frac{1}{2} \dot{q}^2$$

▶ Consider generating functions of all correlators of q(t)

$$\int dt \, \frac{1}{2} \dot{q}^2 + \int dt \, j(t) q(t)$$

- We would like to introduce a new bulk field associated with the source j(t)
- ▶ In terms of the BF theory gauge field, the particle position q(t) can be understood essentially as a Wilson line

$$\int_{z=0}^{\infty} A_z \, dz = -\int_{z=0}^{\infty} \partial_z \Phi(t,z) = \Phi(t,0) - \Phi(t,\infty) o \Phi(t,0)$$

► So we have

$$q(t) = \int_{I} A$$

▶ Consider generating functions of all correlators of q(t)

$$\int dt \; \frac{1}{2} \dot{q}^2 + \int dt \; j(t) q(t)$$

- ▶ We would like to introduce a new bulk field associated with the source j(t)
- ▶ In terms of the BF theory gauge field, the particle position q(t) can be understood essentially as a Wilson line

$$\int_{z=0}^{\infty} A_z \, dz = -\int_{z=0}^{\infty} \partial_z \Phi(t,z) = \Phi(t,0) - \Phi(t,\infty) o \Phi(t,0)$$

► So we have

$$q(t) = \int_{I} A$$

▶ Consider generating functions of all correlators of q(t)

$$\int dt \; \frac{1}{2} \dot{q}^2 + \int dt \; j(t) q(t)$$

- ▶ We would like to introduce a new bulk field associated with the source j(t)
- ▶ In terms of the BF theory gauge field, the particle position q(t) can be understood essentially as a Wilson line

$$\int_{z=0}^{\infty} A_z dz = -\int_{z=0}^{\infty} \partial_z \Phi(t,z) = \Phi(t,0) - \Phi(t,\infty) \to \Phi(t,0)$$

► So we have

$$q(t) = \int_{t} A$$

▶ Consider generating functions of all correlators of q(t)

$$\int dt \; \frac{1}{2} \dot{q}^2 + \int dt \; j(t) q(t)$$

- ▶ We would like to introduce a new bulk field associated with the source j(t)
- ▶ In terms of the BF theory gauge field, the particle position q(t) can be understood essentially as a Wilson line

$$\int_{z=0}^{\infty} A_z dz = -\int_{z=0}^{\infty} \partial_z \Phi(t,z) = \Phi(t,0) - \Phi(t,\infty) \to \Phi(t,0)$$

► So we have

$$q(t) = \int_{t} A$$

▶ Consider generating functions of all correlators of q(t)

$$\int dt \; \frac{1}{2} \dot{q}^2 + \int dt \; j(t) q(t)$$

- ▶ We would like to introduce a new bulk field associated with the source j(t)
- ▶ In terms of the BF theory gauge field, the particle position q(t) can be understood essentially as a Wilson line

$$\int_{z=0}^{\infty} A_z dz = -\int_{z=0}^{\infty} \partial_z \Phi(t,z) = \Phi(t,0) - \Phi(t,\infty) \to \Phi(t,0)$$

► So we have

$$q(t) = \int_{I} A$$

▶ In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form *dt* (this will be modified later)
- ▶ Introduce a constraint term in the action

$$D \alpha \wedge dt$$

▶ In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form dt (this will be modified later)
- ▶ Introduce a constraint term in the action

$$D \alpha \wedge dt$$

In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form *dt* (this will be modified later)
- Introduce a constraint term in the action

$$D\alpha \wedge dt$$

In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form dt (this will be modified later)
- Introduce a constraint term in the action

$$D\alpha \wedge dt$$

In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form dt (this will be modified later)
- Introduce a constraint term in the action

$$D \alpha \wedge dt$$

In order to construct a bulk action which reduces to

$$\int dt \, j(t)q(t)$$

we will need two ingredients

▶ We will introduce another two-dimensional abelian BF theory

$$\int C d\alpha$$

as we need a bulk field going over to j(t) at the boundary...

- ▶ We use the global 1-form dt (this will be modified later)
- Introduce a constraint term in the action

$$D \alpha \wedge dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{M} \alpha \wedge A = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} (B dA + C d\alpha + \alpha \wedge A + D \alpha \wedge dt) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{M} \alpha \wedge A = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} (B dA + C d\alpha + \alpha \wedge A + D \alpha \wedge dt) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{\mathbf{M}} \boldsymbol{\alpha} \wedge \boldsymbol{A} = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} \left(B \, dA + C \, d\alpha + \alpha \wedge A + D \, \alpha \wedge dt \right) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{M} \alpha \wedge A = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} (B dA + C d\alpha + \alpha \wedge A + D \alpha \wedge dt) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{M} \alpha \wedge A = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} (B dA + C d\alpha + \alpha \wedge A + D \alpha \wedge dt) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Now the flatness condition $d\alpha = 0$ ensures $\alpha = j(t)dt$, so we can generate the wanted term from a simple bulk interaction between α and A:

$$\int_{M} \alpha \wedge A = \int_{M} j(t) dt \wedge (A_{t} dt + A_{z} dz) = \int j(t) \int_{0}^{\infty} A_{z} dz dt = \int j(t) q(t) dt$$

At this stage the overall bulk action is

$$S_{bulk}^{II} = \int_{M} (B dA + C d\alpha + \alpha \wedge A + D \alpha \wedge dt) + \frac{1}{2} \int_{\partial M} B^{2} dt$$

Step III – the "gravity" subsector

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2} \int \sqrt{g} g^{tt} (\partial_t q)^2 = \frac{1}{2} \int \frac{1}{e} \dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form dt (which is necessarily closed)
- ► Introduce a third abelian BF pair

$$\int E d\eta$$

▶ The closed 1-form η will play the role of dt.

Step III – the "gravity" subsector

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2}\int\sqrt{g}\,g^{tt}(\partial_tq)^2=\frac{1}{2}\int\frac{1}{e}\dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form dt (which is necessarily closed)
- ▶ Introduce a third abelian BF pair

$$\int E d\eta$$

▶ The closed 1-form η will play the role of dt.

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2}\int\sqrt{g}\,g^{tt}(\partial_tq)^2=\frac{1}{2}\int\frac{1}{e}\dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- At the same time we will replace the 1-form dt (which is necessarily closed)
- ▶ Introduce a third abelian BF pair

$$\int E d\eta$$

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2}\int\sqrt{g}\,g^{tt}(\partial_tq)^2=\frac{1}{2}\int\frac{1}{e}\dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- ► At the same time we will replace the 1-form *dt* (which is necessarily closed)
- ► Introduce a third abelian BF pair

$$\int E d\eta$$

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2}\int\sqrt{g}\,g^{tt}(\partial_tq)^2=\frac{1}{2}\int\frac{1}{e}\dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- ► At the same time we will replace the 1-form *dt* (which is necessarily closed)
- ▶ Introduce a third abelian BF pair

$$\int E d\eta$$

Since the quantum mechanical path integral is essentially just a QFT on a 1-dimensional worldline, one can introduce a fixed 1-dimensional metric $g_{tt}(t)$ and write the action as

$$\frac{1}{2}\int\sqrt{g}\,g^{tt}(\partial_tq)^2=\frac{1}{2}\int\frac{1}{e}\dot{q}^2$$

and the einbein e = e(t) is a given function of time...

- ▶ We would like to introduce a natural bulk field which goes over to the einbein at the boundary.
- ► At the same time we will replace the 1-form *dt* (which is necessarily closed)
- ► Introduce a third abelian BF pair

$$\int E d\eta$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

▶ Now the resulting action will take the form

$$\frac{1}{2} \int_{\partial M} B^2 \eta = \frac{1}{2} \int \frac{1}{\eta_t} A_t^2 dt = \frac{1}{2} \int \frac{1}{\eta_t} \dot{q}^2$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

▶ Now the resulting action will take the form

$$rac{1}{2} \int_{\partial M} B^2 \, \eta = rac{1}{2} \int rac{1}{\eta_t} A_t^2 dt = rac{1}{2} \int rac{1}{\eta_t} \dot{q}^2$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

▶ Now the resulting action will take the form

$$rac{1}{2} \int_{\partial M} B^2 \, \eta = rac{1}{2} \int rac{1}{\eta_t} A_t^2 dt = rac{1}{2} \int rac{1}{\eta_t} \dot{q}^2$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

Now the resulting action will take the form

$$rac{1}{2} \int_{\partial M} B^2 \, \eta = rac{1}{2} \int rac{1}{\eta_t} A_t^2 dt = rac{1}{2} \int rac{1}{\eta_t} \dot{q}^2$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

▶ Now the resulting action will take the form

$$\frac{1}{2}\int_{\partial M}B^2\,\eta=\frac{1}{2}\int\frac{1}{\eta_t}A_t^2dt=\frac{1}{2}\int\frac{1}{\eta_t}\dot{q}^2$$

We will modify the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$

and fix the boundary value of η_t

Accordingly we need to modify the additional boundary action

$$\frac{1}{2} \int_{\{z=0\}} B^2 dt \longrightarrow \frac{1}{2} \int_{\partial M} B^2 \eta$$

(this works as $\delta \eta_t = 0|_{z=0}$)

▶ Now the resulting action will take the form

$$\frac{1}{2}\int_{\partial M}B^2\,\eta=\frac{1}{2}\int\frac{1}{\eta_t}A_t^2dt=\frac{1}{2}\int\frac{1}{\eta_t}\dot{q}^2$$

▶ The final bulk action at this stage is

$$S_{bulk}^{III} = \int_{M} \left(B \, dA + C \, d\alpha + E \, d\eta + \alpha \wedge A + D \, \alpha \wedge \eta \right) + \frac{1}{2} \int_{\partial M} B^{2} \eta$$

with the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$
 $\alpha_t = j(t)|_{z=0}$ $\eta_t = e(t)|_{z=0}$

▶ The final bulk action at this stage is

$$S_{bulk}^{III} = \int_{\mathcal{M}} \left(B \, dA + C \, d\alpha + E \, d\eta + \alpha \wedge A + D \, \alpha \wedge \eta \right) + rac{1}{2} \int_{\partial \mathcal{M}} B^2 \eta$$

with the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$
 $\alpha_t = j(t)|_{z=0}$ $\eta_t = e(t)|_{z=0}$

▶ The final bulk action at this stage is

$$S_{bulk}^{III} = \int_{M} \left(B \, dA + C \, dlpha + E \, d\eta + lpha \wedge A + D \, lpha \wedge \eta
ight) + rac{1}{2} \int_{\partial M} B^2 \eta$$

with the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$
 $\alpha_t = j(t)|_{z=0}$ $\eta_t = e(t)|_{z=0}$

▶ The final bulk action at this stage is

$$S_{bulk}^{III} = \int_{\mathcal{M}} \left(B \, dA + C \, d\alpha + E \, d\eta + \alpha \wedge A + D \, \alpha \wedge \eta \right) + rac{1}{2} \int_{\partial \mathcal{M}} B^2 \eta$$

with the boundary conditions

$$A_t + \eta_t B = 0|_{z=0}$$
 $\alpha_t = j(t)|_{z=0}$ $\eta_t = e(t)|_{z=0}$

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\,DA\,e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- ▶ Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\,DA\,e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- ▶ Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\ DA\ e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- ▶ Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\ DA\ e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\ DA\ e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- ▶ Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

$$e^{iS_{bulk}^{eff}[C,D,E,lpha,\eta]}=\int DB\ DA\ e^{iS_{bulk}^{III}[B,A,C,D,E,lpha,\eta]}$$

- ▶ Unfortunately this seems to be quite nonlocal...
- ▶ One can speculate whether this is a generic situation and a local holographic bulk action in this sense occurs only in special circumstances??? (like large N and/or strong coupling?)

- ► We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- ► Symmetries?
- \blacktriangleright How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- ► Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- N components/singlet? relation to 2D Vasiliev
- ► Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- ▶ We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- ▶ N components/singlet? relation to 2D Vasiliev
- ► Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- ▶ N components/singlet? relation to 2D Vasiliev
- Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- ▶ N components/singlet? relation to 2D Vasiliev
- Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- ► We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- ▶ N components/singlet? relation to 2D Vasiliev
- Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- ► Revisit WZW/CS...

- ► We have constructed a dual description of a quantum mechanical free particle which realizes formally some basic requirements for holography
- ▶ The bulk fields include a source for the field q(t)
- ... and a field reducing to the einbein at the boundary
- ► *N* components/singlet? relation to 2D Vasiliev
- Symmetries?
- ▶ How to incorporate V(q) for the quantum mechanical system?
- Revisit WZW/CS...