AKCELERATOROWA SPEKTOMETRIA MAS (AMS)

Metoda AMS powstała w końcu lat 70-tych ubiegłego wieku, kiedy zaczęto szukać nowych zastosowań dla uniwersyteckich akceleratorów.....(Muller, 1977). Metoda AMS pojawiła się jako alternatywa do pomiarów radiometrycznych niskich stężeń izotopów długożyciowych w środowisku (¹⁴C, ¹⁰Be, ²⁶Al, ³⁶Cl, ¹²⁹I)

Mierząc promieniowanie emitowane przez izotop promieniotwórczy w funkcji czasu, mierzymy jego aktywność:

$$I_{(t)} = I_o \cdot \exp(-\lambda t)$$
$$A_{(t)} = \left| \frac{dI_{(t)}}{dt} \right| = \lambda I_o e(-\lambda t) = \lambda \cdot I_{(t)}$$

Przy bardzo małych wartościach λ (izotopy długożyciowe) pomiar A poprzez pomiar promieniowania emitowanego przez izotop promieniotwórczy staje się bardzo trudne, a w niektórych przypadkach wręcz niemożliwe (wielkość próbki, tło pomiaru, czas pomiaru).

Metoda AMS rozwiązuje ten problem ponieważ wielkością mierzoną jest $I_{(t)}$ a nie $dI_{(t)}/dt.$

<u>Warunek</u>: musimy wyseparować wiązki jonowe odpowiadające izotopom promieniotwórczym !!

<u>UZUPEŁNIENIE</u>

Datowanie materiałów środowiskowych z wykorzystaniem izotopów promieniotwórczych.

Rozpad jądrowy ma charakter stochastyczny - stała rozpadu jest charakterystyczna dla danego izotopu promieniotwórczego i jest stała w czasie!

Zmiana ilości jąder pierwiastka promieniotwórczego w czasie

$$N_{(t)} = N_o \cdot e^{-\lambda t} \longrightarrow t = \frac{1}{\lambda} \ln \frac{N_o}{N_{(t)}}$$

Narost produktu rozpadu w czasie:

$$N_{(k)} = N_{(0)} - N_{(t)} = N_{(0)} \cdot (1 - e^{-\lambda t}) \longrightarrow t = \frac{1}{\lambda} \ln(1 + \frac{N_{(k)}}{N_{(t)}})$$

Założenia:

- musi być znana stała rozpadu λ
- należy ocenić początkową zawartość izotopu w próbce (No)
- datowany układ jest systemem zamkniętym ze względu na oba rodzaje nuklidów (macierzysty i pochodny)
- pomiary N_(t) i N_(k) musza być możliwie precyzyjne i reprezentatywne dla datowanej próbki materiału

<u>Przykład</u>

METODA RADIOWĘGLOWA (¹⁴C)

Izotop promieniotwórczy węgla¹⁴C (izotop kosmogeniczny)

Okres połowicznego zaniku:

 $T_{1/2} = \ln 2/\lambda = 0.693/\lambda = 5730 \text{ lat} \rightarrow \lambda = 0.000121 \text{ rok}^{-1}$

Uwaga: ze względów historycznych przyjmuje się wartość okresu połowicznego zaniku równą

T1/2 = 5568 lat $\rightarrow \lambda = 0.000124 \text{ rok}^{-1}$

$$t = -\frac{1}{\lambda} \ln \frac{A_{(t)}}{A_0} = -8033 \ln \frac{A_{(t)}}{A_0}$$

lle wynosi Ao?

A_o = 0.29 Bq/gC (100% węgla współczesnego)

Problem stałości Ao w przeszłości

Krzywa kalibracyjna

Zasięg metody: ok. 50 tysięcy lat

Jak wyznaczamy A(t) ?

- poprzez pomiar emitowanego promieniowania $\boldsymbol{\beta}$ (metoda konwencjonalna
- poprzez bezpośrednie zliczanie atomów ¹⁴C w próbce (metoda akceleratorowa)

Przykład:

DATOWANIE CAŁUNU TURYŃSKIEGO

Schemat metody AMS:

- Produkcja jonów ujemnych
- Rozdzielanie (selekcja)
- Przyspieszanie
- Przeładowanie jonów (stripping)
- Przyspieszanie
- Rozdzielanie (selekcja)
- Identyfikacja cząstek

W klasycznej spektrometrii mas, wykrywalność metody (minimalna masa bądź ilość atomów substancji analizowanej) jest silnie ograniczona poprzez wymaganie wysokiej rozdzielczości masowej koniecznej do rozdzielenia izobarów. Przykładowo, aby analizować ¹⁴C przy pomocy klasycznej spektrometrii mas, wymagana byłaby rozdzielczość rzędu M/ Δ M = 84000, aby rozdzielić izobary ¹⁴C – ¹⁴N. Taka rozdzielczość może być uzyskana w analizatorze sektorowym tylko przy bardzo wąskich szczelinach. Wąskie szczeliny prowadzą do spadku jasności i natężenia wiązki.

W spektrometrii AMS wysoka wykrywalność jest uzyskiwana przez otwarcie szczelin (wysoka jasność systemu transmisji wiązki) i wykorzystanie innych sposobów usuwania atomowych i molekularnych izobarów. Typowa rozdzielczość masowa AMS jest na poziomie 200 do 400.

Tabela 1. Typy analizatorów stosowane w spektrometrii mas

Typ analizatora	Wielkość selekcjonowana		
1. Pole magnetyczne	M x E/Q ²		
2. Pole elektrostatyczne (ES)	E/Q		
3. Filtr prędkości (filtr Wiena)	M/E		
4. Rezonans cyklotronowy	M/Q		

Filtr prędkości (filtr Wiena) składa się ze skrzyżowanego pola magnetycznego i elektrostatycznego

Jakiekolwiek dwa z typów analizatorów wymienionych w tabeli, ustawione szeregowo, będą selekcjonowały cząstki charakteryzujące się danym stosunkiem M/Q bądź E/Q.

Trudności jakie musi rozwiązać AMS aby uzyskać wymagany próg detekcji przy stosunkowo niskiej rozdzielczości masowej:

<u>Rozpraszanie</u> – wpływ jonów które rozpraszają się od powierzchni wewnętrznych i jonów które zmieniają stan ładunkowy na wskutek oddziaływania z gazem resztkowym w spektrometrze mogą być zredukowane do dowolnego poziomu przez zastosowanie wielokrotnych stopni separacji (Tabela 1).

Interferencje molekularne – główny problem klasycznej spektrometrii mas. Interferencje molekularne mogą być całkowicie usunięte przez przyspieszenie jonów do wysokich energii. Jeżeli jony o energiach rzędu MeV zastaną przepuszczone przez cienką folię bądź gaz, następuje z reguły

proces wielokrotnej jonizacji oraz dysocjacji molekuł. Jeżeli następnie zastosowany jest stopień separacji który separuje jony o wyższym stopniu jonizacji (3 lub większym) przez analizator przepuszczone zostaną tylko jony atomowe.

<u>Izobary</u> – dyskryminacja w odniesieniu do stabilnych atomowych izobarów jest najtrudniejszym problemem analitycznym techniki AMS. Stosuje się tutaj wiele sposobów równolegle:

- (a) oczyszczanie na etapie przygotowanie próbki (praktyczny limit na poziomie $10^{-6} 10^{-8}$).
- (b) wykorzystanie detektorów (dE/dx) w obszarze energii rzędu MeV szybkość strat energii jest funkcją liczby atomowej Z.
- (c) wykorzystanie gazowych magnesów ładunek jonu poruszającego się w obszarze pola magnetycznego wypełnionego gazem fluktuuje wokół wartości średniej która jest funkcją Z.

GŁÓWNE ELEMENTY FUNKCJONALNE AMS

A. Źródło jonów

Technika akceleracji przy użyciu akceleratora Van de Graffa wymaga ujemnych jonów na wejściu. Stąd w technice AMS stosuje się wyłącznie źródła jonów ujemnych. Jest to zasadniczo spektrometr jonów wtórnych (SIMS) który został zoptymalizowany do produkcji wiązek jonów wtórnych o dużym natężeniu.

ZASADA SEPARACJI IZOBARÓW Z WYKORZYSTANIEM MAGNESU GAZOWEGO

gas, ions with a range of charge states are produced by passage through a foil, and give rise to a series of sharp peaks along the focal plane of the magnetic spectrometer which are the same for the two isobars. (b) In the presence of gas, the isobars follow different average trajectories which are determined by Z. Fluctuations about the average trajectory produce much wider 'peaks' at the detector, but the separation of the isobars may be sufficient to allow the high-counting rate one to be intercepted before the detector. (After Paul 1990.)

Typowe prądy: 1 do 10 µA

B. Injektor

Analiza mas wytworzonych jonów ujemnych z rozdzielczością masową wystarczającą do separacji izotopów pierwiastków ciężkich jest konieczna przed etapem przyspieszania jonów w akceleratorze.

C. Akcelerator

Najczęściej stosowany jest akcelerator Van de Graffa typu Tandem bądź Tandetron. Jony ujemne są przyspieszane do centralnego obszaru akceleratora który jest utrzymywany na dodatnim potencjale w zakresie między 2 a 10 MV. Tam jony zostają pozbawione 2 lub więcej elektronów (stripping) stając się jonami dodatnimi które zostają jeszcze raz przyspieszone do wyjścia z akceleratora.

D. Selekcja jonów dodatnich

Ma na celu usunięcie jonów rozproszonych, fragmentów molekularnych i niepożądanych stanów ładunkowych z wiązki. Z reguły stosuje się analizatory magnetyczne i elektrostatyczne

E. System detekcji

Stosuje się komory jonizacyjne (gazowe) bądź krzemowe detektory barierowe bądź kombinację obydwu metod.

Fig. 3. The gas ionization detector used at Rochester. Ions enter through a thin Mylar window into a region filled with isobutane gas at sufficient pressure to stop the ions under the fourth anode plate (about 50 torr for 80-MeV chlorine). Ionization electrons move from the cathode box (-500 V) up through the Frisch grid (-300 V) and are collected by the split anode plates (0 V) providing four ΔE signals. This produces a profile for the energy loss that is distinctly different for each element. The ionization chamber, enclosed by the cathode and capacitively coupled grid, provides a signal proportional to the total energy.

Podstawowe charakterystyki metody AMS

Table 1. Information about radioisotopes measured routinely at natural levels with AMS. Details are given in the references as follows: ${}^{10}\text{Be}(32)$, ${}^{14}\text{C}(95)$, ${}^{26}\text{Al}(93)$, ${}^{36}\text{Cl}(10)$, ${}^{129}\text{I}(29)$. AMS has also been demonstrated for the following radioisotopes: ${}^{32}\text{Si}(88, 89)$, ${}^{41}\text{Ca}(34)$, ${}^{59}\text{Ni}(35)$, ${}^{60}\text{Fe}(41)$, and the stable isotopes ${}^{187}\text{Os}(3)$, Pt, Ir (83), B, P, and Sb (52). The background value is the radioisotope ratio obtained for a blank: a sample with negligible radioisotope content that is prepared identically to the unknown sample. Ion-source efficiency is the fraction of atoms in the sample that are extracted as negative ions and measured in a Faraday cup at the image of the injector magnet for a sample that is completely consumed. The overall efficiency for a sample completely consumed is the product of the ion-source efficiency, stripper yield, and accelerator efficiency. The run time is the time necessary to count 100 radioisotope events in the detector for a sample that has an isotope ratio several times the background value. The decay counting interval is the time required to count 100 radio-active decay events for the same number of atoms placed in a detector that is 100% efficient.

	Radioisotope					
	¹⁰ Be	¹⁴ C	²⁶ Al	³⁶ Cl	¹²⁹ I	
Half-life (years)	1.6×10^{6}	5730	7.05×10^{5}	3.0×10^{5}	1.57×10^{7}	
Stable isotopes	⁹ Be	¹² C, ¹³ C	²⁷ Al	³⁵ Cl, ³⁷ Cl	127 _I	
Stable isobars	¹⁰ B	¹⁴ N*	²⁶ Mg*	³⁶ Ar*, ³⁶ S	¹²⁹ Xe*	
Chemical form [†]	BeO	C‡	Al ₂ O ₃	AgCl	AgI	
Terminal voltage (MV)	7.3	2	7.5	8	5	
Charge state	3	3	7	7	5	
Energy (MeV)	24.7	8	60	64	30	
Sample size (mg)§	0.2	0.25	3	2	2	
Background (×10 ⁻¹⁵)	3	7	1	2	20	
Ion source current (µA)	12	7	1.5	8	3	
Ion source efficiency	5×10^{-3}	≈0.05	2.5×10^{-3}	≈0.03	≈0.01	
Stripper yield	0.54	0.42	0.35	0.32	0.10	
Accelerator efficiency	0.28	0.71	0.43	0.18	0.23	
Overall efficiency	7.5×10^{-4}	1.5×10^{-2}	3.8×10^{-4}	1.7×10^{-3}	2.3×10^{-4}	
Run time (minutes)	10	7	40	30	20	
Atoms per sample¶	2×10^{5}	2×10^{5}	4×10^{5}	5×10^{5}	2×10^{6}	
Decay counting						
interval (years)	1100	3	250	86	1130	

Obecnie na świecie działa ok. 30-tu laboratoriów AMS. W Polsce istnieje od 2002 roku laboratorium AMS na Uniwersytecie Poznańskim.

www.radiocarbon.pl

Zachęcam do odwiedzenia strony!